摘要
The microstructures and mechanical properties of homogenized-rolled AA5052 aluminum alloys with different rolling reductions and following annealing treatments were investigated by optical microscope, scanning electron microscope, X-ray diffractometer, micro-hardness and tensile tests. The results show that with increasing rolling reduction, the equiaxed grains are elongated along the rolling direction obviously, and accumulation of rolling reduction increases the work hardening effect, which results in the enhanced strength and degraded plasticity. When rolling reduction is 87%, the ultimate tensile strength reaches 325 MPa but elongation is only 2.5%. There are much more secondary phase precipitates after annealing treatment. With an increase of annealing temperature, the amount of precipitates increases and work hardening diminishes continuously. The elongation is improved to ~23% but the tensile strength is decreased to 212 MPa after annealing at 300 °C for 4 h, which are comparable to those of as-homogenized alloy.
通过光学显微镜、扫描电镜、X射线衍射分析、硬度实验和拉伸实验等方法,研究不同轧制变形量及后续退火处理对均匀化态5052铝合金组织与性能的影响。研究结果表明,随着轧制变形量的增加,等轴晶沿着轧制方向明显地被拉长。由于轧制变形量的增加,加工硬化效应导致合金强度升高,硬度下降。当轧制变形量为87%时,抗拉强度可达325 MPa,但是伸长率只有2.5%。经退后处理后,大量的第二相析出。随着退火温度的升高,第二相析出增多,并且明显弱化加工硬化效应。当经过300°C处理4 h后,伸长率可达~23%,抗拉强度降至212MPa,此时综合力学性能恢复到均匀化状态。
基金
Project(2011DFR50950)supported by the International Science and Technology Cooperation Program of China
Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of China
Project(CSTC2013JCYJC60001)supported by Chongqing Science and Technology Commission,China