期刊文献+

一类求解TSP构建型算法的通用改进策略 被引量:6

On the universal strategy for improving a certain type of construction heuristic for the traveling salesman problem
原文传递
导出
摘要 分析了求解旅行商问题(traveling salesman problem,TSP)的4种贪婪构建型算法的特点,发现这类算法的最大缺点是在求解初期以贪婪的方式构建解,导致求解后阶段为初期的贪婪付出代价.本文在Held Karp模型基础上提出了一种改造TSP问题距离矩阵的方法——距离矩阵方差最小法(minimizing variance of distance matrix,MVODM),以降低这类算法构建初期的贪婪性,提高算法的总体求解质量.分别采用4种贪婪构建型算法结合和不结合MVODM两种方式,求解了TSPLIB标准库中54个算例,以验证MVODM的有效性.求解结果表明:MVODM能够非常有效地提高4种算法的求解质量,部分改进后的算法质量甚至超过很多世界一流的构建型算法,并且MVODM的执行效率非常高,当算例的规模达到2319时在本实验计算机上的耗时仅为0.076 s,算法的耗时增加量几乎可以忽略不计. In this paper, we analyze the characteristics of four construction heuristics for solving the traveling salesman problem(TSP) and determine that the greatest common weakness of this type of heuristic lies in the greedy construction of solutions during the initial search period. Based on the Held Karp model, we propose the method of Minimizing Variance of Distance Matrix(MVODM) to transform the distance matrix for TSP problems. This method could reduce the greediness of construction during the initial period and improve the overall quality of the solutions. To evaluate the effectiveness of the method, we solve 54 benchmark instances from TSPLIB by using four greedy construction heuristics with and without MVODM for comparison. The results show that MVODM could greatly enhance the solution quality of four heuristics, and some improved heuristics even outperform many world-leading construction heuristics. Moreover, the efficiency of MVODM is so high that an instance size of 2319 cities was run in only 0.076 s on our computer. The increased computation time caused by MVODM could largely be omitted.
出处 《中国科学:信息科学》 CSCD 北大核心 2015年第8期1060-1079,共20页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:71271041) 山东省优秀中青年科学家科研奖励基金(批准号:BS2014SF001) 山东科技大学人才引进科研启动基金(批准号:2013RCJJ020)资助项目
关键词 组合优化 旅行商问题 构建型算法 计算方法 通用策略 combinatorial optimization traveling salesman problem construction heuristic computational meth-ods universal strategy
  • 相关文献

参考文献26

  • 1Dantzig G B, Fulkerson D R, Johnson S M. Solution of a large scale traveling-salesman problem. Oper Res, 1954, 2: 393-410. 被引量:1
  • 2Junger M, Reinelt G, Rinaldi G. Handbooks in OR&MS: Chapter4 the Traveling Salesman Problem. Holland: Elsevier Sci. 1995. 225-330. 被引量:1
  • 3Martmez M A, Cordeau J F, Amico M A, et al. A branch-and-cut algorithm for the double traveling salesman problem with multiple stacks. Informs J Comput, 2013, 25:41-55. 被引量:1
  • 4Chiani C, Manni E, Thomas B W. A comparison of anticipatory algorithms for the dynamic and stochastic traveling salesman problem. Transport Sci, 2012, 46:374-387. 被引量:1
  • 5Dash S, Giinliik O, Lodi A, et al. A time bucket formulation for the traveling salesman problem with time windows. Informs J Comput, 2012, 24:132-147. 被引量:1
  • 6Dorigo M, Stutzle T. Ant Colony Optimization. Cambridge: MT Press, 2004. 40-65. 被引量:1
  • 7Ugur A, Aydin D. An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms. Adv Eng softw, 2009, 40:341-349. 被引量:1
  • 8Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220:671-680. 被引量:1
  • 9Glover F. Tabu search - Part I. ORSA J Comput, 1989, 1:190-206. 被引量:1
  • 10Clover F. Tabu search - Part II. ORSA J Comput, 1990, 2:4-32. 被引量:1

二级参考文献54

共引文献40

同被引文献64

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部