期刊文献+

基于多变量属性分类的图像形态滤波方法研究 被引量:8

Image morphological filtering method based on multivariate attributes classification
下载PDF
导出
摘要 针对复杂结构图像中形态滤波的单一属性难以判定最大树节点状态的问题,提出了基于多变量属性分类的最大树图像形态滤波方法。首先标记图像的各个连通区域,将图像转换为最大树数据结构,然后计算最大树各个节点的面积、灰度值及Zernike矩属性值,并构成节点的属性向量,运用属性样本数据对支持向量机进行训练,获得支持向量机分类模型,最后根据多变量属性分类结果给出节点的枝剪策略。实验结果表明,该方法能有效地滤除复杂结构图像中不同灰度级、大小及形状的噪声区域,同时保留图像目标区域的细节特征。 It is difficult to delete or retain max-tree node by using single attribute in morphology filtering for complex content image. A novel pruning strategy based on the multivariate attribute classification rule is presented. Firstly, each connected region is labeled, and the image is transformed into the max-tree data structure. Then, some attribute values such as node area, gray value and first Zeruike moment are calculated. These separated node attribute values are assembled to form an attribute vector. Meanwhile, support vector ma- chine (SVM) is trained by utilizing a large number of attribute sample data, which can obtain a SVM classification model. Finally, the node state is judged by the multivariate attribute classification rule. The experimental results show that this method can not only effective- ly filter noise while preserving image detail, but also achieved less structural similarity index than other methods.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第8期1735-1743,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61304253 61403426 61471170) 教育部博士点新教师基金(20130162120018) 湖南省自然科学基金(13JJ3111) 湖南省教育厅重点项目(14A078 13A048 15A100)项目资助
关键词 形态滤波 连通区域 最大树 枝剪策略 多变量属性分类 morphological filtering connected region max-tree pruning strategy multivariate attributes classification
  • 相关文献

参考文献15

  • 1ARCO J E, GORRIZ J M, RAMIREZ J, et al. Digital image analysis for automatic ennmeration of malaria para- sites using morphological operations [ J ]. Expert Systems with Applications, 2015, 42(6): 3041-3047. 被引量:1
  • 2BAI X ZH. Morphological infi'ared image enhancement based on multi-scale sequential toggle operator using opening and closing as primitives [ J ]. Infrared Physics & Technology, 2015, 68( 1 ) : 143-151. 被引量:1
  • 3吴一全,宋昱,周怀春.基于各向异性数学形态学的火焰图像边缘检测[J].仪器仪表学报,2013,34(8):1818-1825. 被引量:33
  • 4周开军,桂卫华,朱红求.基于形态模式谱的浮选泡沫图像结构元素选择[J].仪器仪表学报,2013,34(7):1546-1551. 被引量:4
  • 5URBACH E R, ROERDINK J B T M, WILKINSON M H F. Connected shape-size pattern spectra tbr rotation and scale-invariant classification of gray-scale images [ J I. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2007, 29 (2) :272-285. 被引量:1
  • 6OUZOUNIS G K, PESARESI M, SOILLE P. Differential area profiles: Decomposition properties and efficient com- putation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(8) : 1533-1548. 被引量:1
  • 7JORGE H, BEATRIZ M. Shape ultimate attribute open- ing[ J ]. linage and Vision Computing, 2011, 29 ( 8 ) : 533-545. 被引量:1
  • 8SALEMBIER P, WILKINSON M H F. Connected opera- tors: A review of region-based morphological image pro- cessing techniques [ J ]. IEEE Signal Processing Maga-zinc, 2009, 26(6) : 136-157. 被引量:1
  • 9KURTZ C, NAEGEL B, PASSAT N. Connected filtering based on muhivalued component-trees [ J]. IEEE Trans- actions on Image Processing, 2014, 23 (12): 5152-5164. 被引量:1
  • 10CLIMENT J, OLIVEIRA L S. A new algorithm for num- ber of holes attrit~ute filtering of grey-level images [ J 1. Pattern Recognition Letters, 2015, 53(1): 24-30. 被引量:1

二级参考文献40

  • 1boyun huang Academician of Chinese Academy of Engineering,Vice-president of China Association for Science and Technology,Vice-chairmen of China Postdoctoral Science Foundation.Preface[J].中国有色金属学会会刊:英文版,2009,19(S3):527-527. 被引量:54
  • 2RODDY D. Advanced power plant materials, design and technology [ M ]. UK: Woodhead Publ. , 2010. 被引量:1
  • 3LU G, YAN Y, COLECHIN M. A digital imaging based multi-functional flame monitoring system [ J ]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4) :1152-1158. 被引量:1
  • 4QIU T, YAN Y, LU G. An autoadaptive edge-detection al- gorithm for flame and fire image processing [ J ]. IEEE Transactions on Instrumentation and Measurement,2012, 61 (5) :1486-1493. 被引量:1
  • 5GILABERT G, LU G, YAN Y. Three-dimensional tomo- graphic reconstruction of the luminosity distribution of a combustion flame [ J ]. IEEE Transactions on Instrumenta- tion and Measurement, 2007,56 (4) : 1300 - 1306. 被引量:1
  • 6ADKINS C W. Users guide for fire image analysis system- Version 5.0 : A tool for measuring fire behavior character- istics [ M ]. U. S. Dept. Agric. , Forest Service, Southern Res. Station, Asheville, NC, Gen. Teeh. Rep. SE93,1995. 被引量:1
  • 7BHEEMUL H C, LU G, YAN Y. Three-dimensional visu- alization and quantitative characterization of gaseous flames [ J ]. Measurement Science and Technology, 2002, 13 (10) : 1643-1650. 被引量:1
  • 8ZHANG Z, ZHAO J, ZHANG D, et al. Contottr based forest fire detection using : and wavelet[ C]. Proceedings-Inter-national Conference on Computer Science and Software En- gineering, Wuhan, China,2008:760-763. 被引量:1
  • 9TOREYIN B U, DEDEOGLU Y, and CETIN A E. Flame detection in video using hidden Markov models [ C ]. Pro- ceedings-Intemational Conference on Image Processing, Genova, Italy, 2005 : 1230-1233. 被引量:1
  • 10TOREYIN B U, DEDEOGLU Y, GUDUKBAY U, et al. Com- puter vision based method for real-time fire and flame detec- tion [ J ]. Pattern Recognition Letters ,2006,27 ( 1 ) :49-58. 被引量:1

共引文献35

同被引文献50

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部