期刊文献+

轻质钢的研究进展(二)——铁素体—奥氏体双相轻质钢和奥氏体轻质钢 被引量:6

State of knowledge on lightweight steels( Part Ⅱ)——Ferrite-austenite dual-phase lightweight steels and austenitic lightweight steels
下载PDF
导出
摘要 首先主要阐述了富Al铁素体—奥氏体双相轻质钢和奥氏体轻质钢的微观组织特征、力学性能和强韧化机制。尽管添加Al可以降低钢的密度和提高比强度,但是它会使钢的弹性模量显著降低。针对这一不利属性,介绍了一种切实可行的提高轻质钢(以及碳钢)弹性模量的措施,即利用凝固过程中原位自生高弹性模量的硬质颗粒(如Ti C和Ti B2等)来增强钢的基体。所形成的颗粒增强钢基复合材料可以具有较常规碳钢和富Al轻质钢更高的弹性模量和比弹性模量。 A detailed review of microstructural characteristics, mechanical property, and strengthening mechanisms of Al-rich ferrite-austenite dual-phase lightweight steels and austenitic lightweight steels were given. Although A1 addition leads to a decrease of density and an increase in specific strength, it results in a remarkable drop of elastic modulus of a steel. In view of this unfavorable attribute, a feasible measure for improving elastic modulus of a lightweight steel( and also carbon steel) was introduced, i. e. , employing hard particles such as TiC and ZiB2 which possess higher elastic modulus and in-situ form during solidification to reinforce the steel matrix. Compared to conventional carbon steels and Al-rich lightweight steels, the particle-reinforced steel matrix composites thereby developed can have much higher elastic moduli as well as specific elastic modulus.
出处 《宝钢技术》 CAS 2015年第4期1-8,共8页 Baosteel Technology
关键词 铁素体--奥氏体双相轻质钢 奥氏体轻质钢 高弹性模量钢 ferrite-austenite dual-phase lightweight steels austenitic elastic modulus steels lightweight steels high
  • 相关文献

参考文献24

  • 1杨旗,王俊峰,丛郁,王利.轻质钢的研究进展(一)——富Al无间隙原子钢和铁素体轻质钢[J].宝钢技术,2015,8(3):1-10. 被引量:6
  • 2Adam Grajcar. Corrosion Resistance of High-Mn Austenitic Steels for the Automotive Industry [ M/OL]. Intech, 2012. http ://www. intechopen, corn/books/corrosion-resistance/corrosion-resistance-of-high-mn-austenitic-steels-for-the- automotive-industry. 被引量:1
  • 3Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fauh energy and mechanical properties of an austenitic Fe-Mn-C steel [ J ]. Materials Science and Engineering: A, 2008,483/484: 184-187. 被引量:1
  • 4Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels [ J ]. Metallurgical and Materials Transactions : A, 2009, 40( 13 ) : 3076 - 3090. 被引量:1
  • 5Kim J, Lee S-J, De Cooman B C. Effect of A1 on the stacking fault energy of Fe-18Mn-O. 6C twinning-induced plasticity[ J]. Scripta Materialia, 2011, 65 (4) : 363 - 366. 被引量:1
  • 6Jeong J S, Woo W, Oh K H, et al. In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels [ J ]. Acta Materialia, 2012, 60(5 ) : 2290 -2299. 被引量:1
  • 7Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9A1-0.6C steel having the reduced specific weight [ J]. Materials Science and Engineering: A, 2011,528 (15) : 5196 -5203. 被引量:1
  • 8Sutou Y, Kamiya N, Umino R, et al. High-strength Fe- 20Mn-Al-C-based Alloys with Low Density [ J 5. ISIJ International, 2010, 50(6) : 893 -899. 被引量:1
  • 9Yon J D, Hwang S W, Park K-T. Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel [J]. Materials Science and Engineering: A, 2009, 508( 1/2): 234-240. 被引量:1
  • 10Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[ J ]. Scripta Materialia, 2013, 68 (6) : 343 - 347. 被引量:1

二级参考文献36

  • 1Ham J L, Caims R E. Manganese Joins Aluminum to Give Strong Stainless [ J ]. Product Engineering, 1958 (2) :51 - 52. 被引量:1
  • 2Charles J, Berghezan A, Lutts A. High Manganese-Aluminium Austenitic Steels For Cryogenic Applications, Some Mechanical and Physical Properties [ J ]. Journal Physique Colloques, 1984,45 : ( C1 - 619 - 623 ). 被引量:1
  • 3Brtix U, Frommer G. Light-weight steels based oniron- aluminium-influence of micro alloying elements (B_ Ti_ Nb ) onmierostructures_ textures and mechanical properties [ J ]. Steel Research International,2002,73 ( 12 ) :534 - 548. 被引量:1
  • 4Frommeyer G, Drewes E, Engl B. Physical and mechanical properties of iron-aluminium-( Mn, Si ) lightweight steels [ J ]. La Revue de M6tallurgie-CIT,2000,10 : 1245 - 1253. 被引量:1
  • 5Frommeyer G, Briix U. Mierostructures and mechanical properties of high-strength Fe-Mn-A1-C light-weight TRIPLEX steels [ J ]. Steel Research International, 2006, 77 ( 7 ) : 627 - 633. 被引量:1
  • 6Kim H,Suh D W,Kim N J alloys: a review on the Fe-A1-Mn-C lightweight structural and mechanical properties [ J ]. Science and Technology of Advanced Materials, 2013,14(1) :1 - 11. 被引量:1
  • 7Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-2OMn- A1-C-based Alloys with Low Density [ J ]. ISIJ International, 2010,50(6) :893 -899. 被引量:1
  • 8Chakrabarti D J. Phase stability in ternary systems of transition elements with aluminum [ J ]. MTB, 1977,8 ( 1 ) : 121 - 123. 被引量:1
  • 9lshida K,Ohtani H,Satoh N,et al. Phase Equilibria in Fe-Mn- A1-C Alloys [ J ]. ISIJ International, 1990,30 ( 8 ) :680 - 686. 被引量:1
  • 10Rana R, Liu C, Ray R K. Low-density low-carbon Fe-A1 ferritic steels [ J ]. Scripta M aterialia,2013,68 ( 6 ) :354 - 359. 被引量:1

共引文献5

同被引文献30

引证文献6

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部