摘要
研究了基于模糊系统方法实现非线性系统的建模的可辨识性问题。首先,划分模糊模型的输入空间,选取隶属度函数,确定该模糊系统的规则数目和规则。其次,在已确定的模糊模型输入空间的情况下,研究模糊建模的可辨识性条件,并给出了基于列主元QR分解的可辨识条件的判别方法。最后,采用本文方法对非线性系统进行建模研究,验证了该方法的有效性。
This paper investigates the identifying ability of nonlinear systems based on fuzzy modeling. First of all, the input space of fuzzy model is confirmed by choosing membership funtions, including the number of rules and rules. In addition, identifiability conditions are researched with the input space of fuzzy model having been confirmed, the The criterion of the identifiability based on QR decomposition of matrix is given in the proposed paper. Finally, simulating sample and performance demonstrate the effectiveness and the feasibility of the prposed algorithm in the end of the comparison can paper.
出处
《模糊系统与数学》
CSCD
北大核心
2015年第3期34-42,共9页
Fuzzy Systems and Mathematics
关键词
模糊建模
可辨识性
矩阵QR分解
非线性系统
Fuzzy Modeling
Identifiability
QR Decomposition of Matrix
Nonlinear Systems