期刊文献+

基于电流监测法的粗糙表面微通道电渗流实验研究

Experimental research of electroosmotic flow in rough microchannels based on current-monitoring method
下载PDF
导出
摘要 制作2种PMMA微流控芯片,对其微通道内表面参数进行测试。基于电流监测法,设计微流控芯片电渗流检测系统。首先测量光滑微通道电渗流速度,验证了实验的可行性,并可以预测微通道的表面电势;然后对粗糙微通道电渗流进行测量;最后对比分析电场强度、溶液浓度等对光滑和粗糙微通道电渗流的影响。结果表明:(1)不规则粗糙表面微通道电渗流速度随电场强度、溶液浓度的变化规律和光滑表面微通道一致;(2)相对于光滑表面微通道,粗糙表面微通道电渗流速度明显降低;当相对微通道深度为5%时,降低幅度约为23%。(3)随着电场强度或者溶液浓度的增大,粗糙和光滑微通道电渗流速度的差距增大。所用实验方法具有直观、方便和成本低的优点。 Two kinds of PMMA microfluidic chips were manufactured,and the surface param-eters of the microchannels were tested.A electroosmotic flow (EOF)experimental system with the microfluidic chip was designed based on the current-monitoring method.Firstly,the EOF ve-locity in smooth microchannels was measured,which validated the feasibility of the experimental method.The method can predict the microchannel surface potential.Secondly,the EOF velocity in rough microchannels was measured.Finally,the influence of the electric strength and ionic concentration on the EOF in smooth and rough microchannels was analyzed .The results show that:(1 )The EOF velocity in smooth and rough microchannels is proportional to the electric strength;the EOF velocity decreases with the increase of ionic concentration both in smooth and rough microchannels.(2)The EOF velocity in rough microchannels is significantly decreased. The velocity is decreased by 23%,when the relative roughness is 5%.(3)The gap between the EOF velocities in smooth and rough microchannels increases with the increase of electric strength or solution concentration.The experimental method possesses the advantage of being intuitive, convenient and low cost.
作者 徐涛 杨大勇
出处 《实验流体力学》 CAS CSCD 北大核心 2015年第4期41-46,共6页 Journal of Experiments in Fluid Mechanics
基金 国家自然科学基金资助项目(11302095)
关键词 微通道 粗糙表面 电渗流 电流监测法 PMMA microchannel PMMA rough surface electroosmotic flow current-monitoring method
  • 相关文献

参考文献17

  • 1林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006:18,34. 被引量:31
  • 2冯焱颖,周兆英,叶雄英,汤扬华.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-16. 被引量:47
  • 3Dutta P, Beskok A. Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects [J]. Analytical Chemistry, 2001, 73: 1979-1986. 被引量:1
  • 4Sinton D, Escobedo-Canseco C, Ren L, et al. Direct and indirect electroosmotic flow velocity measurements in microchannels[J]. Journal of Colloid and Interface Science, 2002, 254: 184-189. 被引量:1
  • 5Kim M J, Beskok A, Kihm K D. Microscopic PIV measurements for electroosmotic flows in PDMS microchannels[J]. Journal of Visualization, 2004, 7(2): 111-118. 被引量:1
  • 6Wang W, Zhou F, Zhao L, et al. Measurement of electroosmotic flow in capillary and microchip electrophoresis[J]. Journal of Chromatography A, 2007, 1170: 1-8. 被引量:1
  • 7Ren L, Escobedo C, Li D. Electroosmotic flow in a microcapillary with one solution displacing another solution[J]. Journal of Colloid & Interface Science, 2002, 242(1): 264-272. 被引量:1
  • 8孙悦,沈志滨,曾常青.一种直接测定微流控芯片电渗流速度的新方法[J].色谱,2007,25(5):690-693. 被引量:8
  • 9Hsieh S S, Lin H C, Lin C Y. Electroosmotic flow velocity measurements in a square microchannel[J]. Colloid and Polymer Science, 2006, 284(11): 1275-1286. 被引量:1
  • 10Hu Y, Xuan X, Werner C, et al. Electroosmotic flow in microchannels with prismatic elements[J]. Microfluidics and Nanofluidics, 2007, 3(2): 151-160. 被引量:1

二级参考文献88

  • 1叶美英,方群,殷学锋.聚二甲基硅氧烷基质微流控芯片通道的氧气氛改性研究[J].分析化学,2004,32(12):1585-1589. 被引量:6
  • 2[1]Gad-el-Hak Mohamed. The fluid mechanics of microdevices-The Freeman Scholar Lecture. Journal of Fluids Engineering. 1999, 121:5~33 被引量:1
  • 3[2]Ho C M, Tai Y C. Micro-Electro-Mechanical systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics,998, 30:579~612 被引量:1
  • 4[3]Freemantle M. Downsizing chemistry. C & EN, 1999, 77(8): 27~36 被引量:1
  • 5[4]Papautsky I, Brazzle J, Ameel T, Frazier A B. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical, 1999, 73(1-2): 101~108 被引量:1
  • 6[5]Jiang X N, Huang X Y, Liu C Y, Zhou Z Y, Li Y, Yang Y. Micronozzle/diffuser flow and its application in micro valveless pumps. Sensors and Actuators A: Physical, 1998, 70(1-2): 81~87 被引量:1
  • 7[6]Pfahler J, Harley J C, Bau H, Zemel J N. Gas and liquid flow in small channels. ASME-DSC, 1991, 32:49~60 被引量:1
  • 8[7]Gau H, Herminghaus S, Lenz P, Lipowsky R. Liquid morphologies on structured surfaces: from microchannels to microchips. Science, 1999, 283:46~49 被引量:1
  • 9[8]Grunze M. Driven liquids. Science, 1999, 283:41~42 被引量:1
  • 10[9]Gallardo B S, Gupta V K, Eagerton F D, Jong L I, Craig V S, Shah R R, Abbott N L. Electrochemical principles for active control of liquids on submillimeter scales. Science, 1999, 283:57~60 被引量:1

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部