期刊文献+

球近似艾黎-海斯卡宁均衡模型分析 被引量:1

Analysis of the Airy-Hesikanen model in spherical approximation
原文传递
导出
摘要 针对传统的均衡重力异常方式基于平面近似,积分范围较小、计算公式的适用性受限、表征的信息量有限的问题,该文在球坐标下分析艾黎-海斯卡宁(Airy-Hesikanen)均衡模型。以计算点向径为半径,将地形分为布格球壳和粗糙地形两部分,计算其地形影响和均衡改正。在实验区,选用补偿深度21km、密度差0.678g/cm3的模型参数,采用该文公式和传统公式计算均衡重力异常,并比较分析其计算值。结果表明,以球近似Airy-Hesikanen均衡模型计算均衡重力异常值,在小积分范围以及平坦地区,与传统公式计算值的精度相当;但随着积分半径增加,球近似Airy-Hesikanen均衡模型计算值精度不断提高、变化更平缓,说明球近似AiryHesikanen均衡模型代替平面近似Airy-Hesikanen均衡模型应用于重力问题研究更为符合地球实际情况。 The Airy-Hesikanen model was studied in terms of spherical coordinate in this paper. In the spherical approximation,the isostatic gravity anomalies were calculated by dividing the actual topography into the Bouguer shell and the rough terrain according radius of the compute point. In the test area, compar- isons with the tradition method were analyzed with the compensation depth of 21km, the density contrast of 0. 678 g/cm3 , and the 30"×30"SRTM terrain data. Overall,the accuracy of the isostatic gravity anomalies calculated with the proposed method was better than the traditional one in the big integral region, and consistent in the small and plat regions. Bigger integral region was used, better precision and smaller variation were gained. So Airy- Hesikanen model in the planar approximation replaced by the spherical approximation was fitter for the actual shape of the earth when it was applied in the gravity study.
作者 荣敏 周巍
出处 《测绘科学》 CSCD 北大核心 2015年第8期33-36,27,共5页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41174018 41304022) 地球空间环境与大地测量数据教育部重点实验室开放基金项目(11-01-03)
关键词 艾黎-海斯卡宁模型 粗糙地形 布格球壳 均衡重力异常 平面近似 球面近似 Airy-Hesikanen model rough terrain Bouguer shell isostatic gravity anomaly planar ap-proximation spherical approximation
  • 相关文献

参考文献17

二级参考文献51

  • 1章传银,晁定波,丁剑,文汉江,常晓涛.厘米级高程异常地形影响的算法及特征分析[J].测绘学报,2006,35(4):308-314. 被引量:22
  • 2莫里兹 陈俊勇等(译).地球形状--理论大地测量学和地球内部物理学[M].北京:测绘出版社,1992.. 被引量:2
  • 3FEATHESTONE W E, KIRBY J F. The Reduction of Aliasing in Gravity Anomalies and Geoid Heights Using Digital Terrain Data[J]. Geophys. J. Int. 2000, 141(3): 204-212. 被引量:1
  • 4海斯卡涅·W A;莫里兹·H.物理大地测量学[M].北京:测绘出版社,1980. 被引量:1
  • 5莫里兹·H.高等物理大地测量学[M].北京:测绘出版社,1979. 被引量:1
  • 6NAHAVANDCHI H, SJOBERG I. E. Precise Geoid Determination over Sweden Using the Stokes-Helmert Method and Improved Topographic Corrections[J]. Journal of Geodesy, 2001, 75(1): 74-88. 被引量:1
  • 7OMANG C D, Forsberg R. How to Handle Topography in Practical Determination: Three Example[J]. Journal of Geodesy, 2000, 74(6): 458-466. 被引量:1
  • 8SJOBERG L E. Topographical Effects by the Stokes-Helmert Method of Geoid and Quasi-geoid Determination[J]. Journal of Geodesy, 2000, 74(2): 255-268. 被引量:1
  • 9SJOBERG L E, Nahavandchi H, On the indirect effect in the Stokes-Helmert Method of Geoid Determination[J]. Journal of Geodesy, 1999, 73(2): 87-93. 被引量:1
  • 10STRANG G. Precision of the Geoid, Computed from Terrestrial Gravity Measurements[J]. Manuscr Geod, 1986, 11: 1-14. 被引量:1

共引文献100

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部