期刊文献+

基于强化学习的IEEE802.15.4网络区分服务策略 被引量:5

IEEE 802.15.4 differentiated service strategy based on reinforcement-learning
下载PDF
导出
摘要 为了弥补IEEE 802.15.4协议原有区分服务机制的不足,提出了一种基于BCS(backoff counter scheme)与强化学习的区分服务策略。从终端节点出发,在原优先级区分服务策略的基础上增加BCS退避策略以解决流量较大场合业务区分问题;针对协调器节点,提出了基于强化学习的占空比调整策略,该策略能根据不同应用需求和环境变化自适应调整占空比。仿真结果表明,提出算法能针对不同环境满足高优先级业务性能需求,并能根据流量变化进行占空比调整,具有极强环境适应性。 To provide better support in differentiated service for IEEE 802.15.4, a novel differentiated service mechanism was proposed based on BCS(back off counter scheme) and reinforcement learning. In terms of end-device, BCS backoff strategy was added to original priority-based differentiated strategy to solve the service differentiation problem under higher traffic condition. While for the coordinator, a reinforcement learning based duty-cycle adjustment algorithm was proposed to "self-learning" an optimal duty-cycle according to different application requirements and environmental changes. Simulation shows that the proposed algorithm can meet the performance requirements of high-priority service under different environments and adjust the duty-cycle when traffic is changed, which showed a strong environmental adaptability.
出处 《通信学报》 EI CSCD 北大核心 2015年第8期171-181,共11页 Journal on Communications
基金 国家自然科学基金资助项目(61071073 61371092)~~
关键词 IEEE 802.15.4/LR-WPAN 区分服务 退避机制 强化学习 占空比 IEEE 802.15.4/LR-WPAN differentiated-service BCS reinforcement-learning duty-cycle
  • 相关文献

参考文献13

  • 1CALLAWAY E, GORDAY P, HESTER L. Home networking with IEEE 802,15.4: a developing standard for low-rate wireless personal area networks[J].IEEE Communications Magazine, 2002, 40(8):70-77. 被引量:1
  • 2OTTO C, MILENKOVIt A, SANDERS C. System architecture of a wireless body area sensor network for ubiquitous health monitoring[J]. Journal of Mobile Multimedia, 2006, 1(4): 307-326. 被引量:1
  • 3CAO X, CHEN J, ZHANG Y. Development of an integrated wireless sensor network micro-environmental monitoring system[J].ISA Transactions, 2008, 47(3): 247-255. 被引量:1
  • 4IEEE 802,15.4 Standard (2003) Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)[S]. IEEE-SA Standards Board, 2003. 被引量:1
  • 5TSENG P, FENG K, LIN Y. Wireless location tracking algorithms for environments with insufficient signal sources[J]. IEEE Transactions on Mobile Computing, 2009, 8(12): 1676-1689. 被引量:1
  • 6HO C, L1N C, HWANG W. Dynamic GTS allocation scheme in IEEE 802,15.4 by multi-factor[A],2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP)[C]. Piraeus, 2012.457-460. 被引量:1
  • 7KOUBAA A, ALVES M, NEFZI B. Improving the IEEE 802,15.4 slotted CSMA/CA MAC for time-critical events in wireless sensor networks[A].Proceedings of the Workshop on Real Time Networks (RTN '06)[C]. Dresden, 2006,270-277. 被引量:1
  • 8KIPINS D, WILLIG A, HAUER J. The angel IEEE 802,15.4enhancement layer: coupling priority queueing and service differentia- tion[A]. Wireless Conference, EW 2008. 14th European[C]. Prague, 2008,1-7. 被引量:1
  • 9ROHM D, GOYAL M, HOSSEINI S. A simulation based analysis of the impact of IEEE 802,15.4 MAC parameters on the performance under dif- ferent waffle loads[J].Mobile Information Systems, 2009, 5(1 ): 81-99. 被引量:1
  • 10SUTTON R, BARTO A. Reinforcement Learning: An Introduction[M]. Massachusetts: MIT Press, 1998. 被引量:1

同被引文献47

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部