期刊文献+

有限群为可解群的一个充分条件 被引量:1

A Sufficient Condition for Solvability of a Finite Group
下载PDF
导出
摘要 有限群G的子群H称为G的置换子群(或拟正规子群),如果H与G的任意子群K可置换(即HK=KH).设H,K和L都是群G的子群,且满足H≤K≤L,若H是K的拟正规子群,K是L的拟正规子群,必有H是L的拟正规子群,则称群G为PT-群.本文研究了群G的所有非正规极大子群M都是可解PT-群,得到群G为可解群的一个新的充分条件. A subgroup H of a group G is called permutable(or quasinormal) if HK=KH for all subgroups K of G. A finite group G is called a PT-group if, for subgroups H, K and L satisfying H≤K≤L with H quasinormal in K and K quasinormal in L, it is always the case that H is quasinormal in L. In this paper, we investigated the always the case that H is quasinormal in L. In this paper, we investigated the influence of all non-normal maximal sub groups M of G being solvable PT-groups on solvablity of a finite group G. A new sufficient condition for a group G to be solvable was ziven.
出处 《海南师范大学学报(自然科学版)》 CAS 2015年第2期145-146,共2页 Journal of Hainan Normal University(Natural Science)
关键词 拟正规子群 PT-群 可解群 超可解群 quasinormal subgroups PT-groups solvable groups supersolvable groups
  • 相关文献

参考文献9

  • 1Robinson D J S. A Course in the Theory of Groups[M]. New York-Heidelberg-Berlin:Springer-Vedag, 1980. 被引量:1
  • 2Agrawal R K. Finite groups whose subnormal subgroups per- mute with all Sylow subgroups[ J ]. Proc Amer Math Soc, 1975,47(1):77-83. 被引量:1
  • 3Bucldey J. Finite groups whose minimal subgroups are nor- mal[J ]. Math Z,1970,116:15-17. 被引量:1
  • 4Guo X Y, Guo P F, Shum K P. On semi cover-avoiding subgroups of finite groups[ J ]. J Pure Appl Algebra,2007,209: 151-158. 被引量:1
  • 5Li Q L, Guo X Y. On p-nilpotence and solubility of groups [J ]. Arch Math,2011,96:l-7. 被引量:1
  • 6Li S l:k, Shen Z C, Kong X H. On SS-quasinormal sub- groups of finite groups[ J ]. Comm Algebra,2008,36(12): 4436-4447. 被引量:1
  • 7Gaschutz W. Gruppen in denen das Normalteilersein transi- tiv ist[ J ]. J reine angew Math, 1957,198:87-92. 被引量:1
  • 8Zacher G. I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali [ J ]. Atti Acad Naz Lincei Rend CI Sci Fis Mat Natur,1964, 37(8):150-154. 被引量:1
  • 9Doerk K. Minimal nicht, endliche Gruppen[ J ]. Math Z, 1966,91:198-205. 被引量:1

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部