期刊文献+

面向Android系统安全分析的在线学习算法研究 被引量:2

Study of online learning algorithm oriented to Android security analysis
下载PDF
导出
摘要 针对当前移动终端使用中存在的安全隐患,研究了一种新的面向Android移动终端的入侵检测算法。首先是在Android平台上收集移动终端内核信息并进行预处理,通过引入快速核密度估计(fast kernel density estimation,Fast KDE)算法对收集到的大规模样本进行压缩,得到数量合理的训练样本,然后结合在线增量学习算法,利用支持向量机(SVM)算法对处理后的数据进行判别以识别出入侵。实验结果表明,该方法极大缩短了训练时间,检测性能逐步达到最佳,具有较好的可扩展性和自提升能力。 In order to solve hidden security risks of mobile terminal, this paper proposed a new intrusion detection algorithm for Android mobile terminal. Firstly, the proposed system normalized kernel information, which was collected on the Android platform. And it obtained a reasonable number of training samples by introducing fast kernel density estimation algorithm (FastKDE). Based on incremental learning online algorithm, using support vector machine (SVM) which was good at han- dling classification of small sample data, and the system determined whether it was invaded or not. The experimental results show that this method greatly shortens the training time, and gradually achieves the best detection performance, with better scalability and self-enhancing capabilities.
作者 葛唯唯 刘渊
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2774-2778,共5页 Application Research of Computers
基金 江苏省自然科学基金重点项目(BK2011003) 国家自然科学基金资助项目(61103223)
关键词 Android移动终端 入侵检测 快速核密度估计 支持向量机 在线学习 Android mobile terminal intrusion detection fast kernel density estimation support vector machine ( SVM ) online learning
  • 相关文献

参考文献16

  • 1Worldwide smartphone 2014—2018 forecast and analysis[R].According to IDC. 被引量:1
  • 2Cheng J,Wong S H Y,Yang Hao,et al.SmartSiren:virus detection and alert for smartphones[C]//Proc of the 5th International Confere-nce on Mobile Systems,Applications and Services.2007:258-271. 被引量:1
  • 3傅德胜,姜怀琴.基于手机平台的入侵检测系统的研究[J].计算机安全,2009(3):46-48. 被引量:4
  • 4Shabtai A,Kanonov U,Elovici Y.Intrusion detection for mobile devices using the knowledge-based,temporal abstraction method[J].Journal of Systems and Software,2010,83(8):1524-1537. 被引量:1
  • 5Bickford J,Lagar-Cavilla H A,Varshavsky A,et al.Security versus energy tradeoffs in host-based mobile malware detection[C]//Proc of the 9th International Conference on Mobile Systems,Applications,and Services.2011:225-238. 被引量:1
  • 6吴志忠.移动设备及网络的异常检测方法研究[D].合肥:中国科学技术大学,2012. 被引量:1
  • 7Novakovic J,Veljovic A.C-support vector classification:selection of kernel and parameters in medical diagnosis[C]//Proc of the 9th IEEE International Symposium on Intelligent Systems and Informati-cs.2011:465-470. 被引量:1
  • 8Gu Bin,Wang Jiandong.Regularization path for ν-support vector classification[J].IEEE Trans on Neural Networks,2012,23(5):800-811. 被引量:1
  • 9Chang Chihchung,Lin Chihjen.LIBSVM:a library for support vector machines[J].ACM Trans on Intelligent Systems and Technology,2011(2-3):27. 被引量:1
  • 10Freedman D,Kisilev P.Fast data reduction via KDE approximation[C]//Proc of Data Compression Conference.2009:445. 被引量:1

二级参考文献23

  • 1桑农,张荣,张天序.一类改进的最小距离分类器的增量学习算法[J].模式识别与人工智能,2007,20(3):358-364. 被引量:9
  • 2I vor W T. Andras K.James T K. Simpler core vector machines with enclosing balls[CJ //Proc of ICML'07. New York: ACM. 2007: 911-918. 被引量:1
  • 3Cortes C. Vapnik V N. Support vector networks[J]. Machine Learning. 1995. 20(3): 273-297. 被引量:1
  • 4Chang Chihchung , Lin Chihjen. LlBSVM: A library for support vector machines[EB/OLJ. 2001[2007-08-06]. http://www.csie.ntu.edu.tw/-cjlin/libsvm. 被引量:1
  • 5Ivor W T.James T K.Jacek M. Generalized core vector machine[J]. IEEE Trans on Neural Networks. 2006. 17 (5): 1126-1140. 被引量:1
  • 6Ivor W T.James T K. Cheung P M. Core vector machines: Fast svm training on very large data sets[n.Journal of Machine Learning Research. 2005. 6( 1): 363-392. 被引量:1
  • 7Tax D M i. Duin R P W. Support vector data description[J]. Machine Learning. 2004. 540): 45-66. 被引量:1
  • 8Badoiu M. Clarkson K I.. Smaller core-sets for balls[CJ // Proc of Symp on Discrete Algorithms. New York: ACM. 2003: 801-802. 被引量:1
  • 9Badoiu M. Clarkson K I.. Optimal core-sets for balls[n. Computational Geometry. 2008. 400): 14-22. 被引量:1
  • 10Hamid Z Z. Timothy M. A simple streaming algorithm for minimum enclosing balls[CJ //Proc of the 18th Canadian Conf on Computational Geometry. Piscataway. NJ: IEEE. 2006: 139-142. 被引量:1

共引文献7

同被引文献25

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部