期刊文献+

超柔性太阳能无人机纵向操稳特性研究 被引量:3

Longitudinal Stability and Control of Highly Flexible Solar-Powered UAV
下载PDF
导出
摘要 针对高空长航时太阳能无人机的超柔性机翼气动弹性变形明显,与飞行动力学响应耦合,常规分析方法会引起较大误差的特点。本文首先采用拉格朗日方程建立了能够反映超柔性特性的结构/飞行耦合动力学模型;然后结合气动弹性引起的结构变形、全机构型变化和气动导数变化,采用根轨迹法深入分析超柔性太阳能无人机的纵向稳定性;最后研究了气动弹性变形对纵向飞行控制律的影响规律,提出了改进方案并进行了仿真验证。发现超柔性太阳能无人机的纵向特征根随机翼刚度变化很明显,尤其当刚度较小时将会出现短周期和一弯模态耦合、长周期不稳定等不利现象;采用刚性或静气动弹性模型设计得到的控制律增益偏小,同时控制机翼变形和飞行姿态可以得到更平滑的控制效果。 The structure of the wing of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is highly flexible. The aeroelasticity and flight dynamics are highly coupled. This influences the flight safety seriously. In the stage of conceptual design, it is necessary to research the characteristics of flight dynamics and control thoroughly for highly flexible wing. In this paper, the Lagrangian method is employed to model the motion of rigidwing UAV, the same configuration with static aeroelastic deformation and highly flexiblewing UAV. The longitudinal characteristics of flight dynamics and control are compared and it is found that, while considering the static deformation only, owing to the becoming large of the pitch moment of inertia, the stability derivatives of the pitch axis are reduced and the damp and frequency of short period mode are obviously reduced. The frequency of phugoid changes little but the damping of it is also obviously reduced. It can be found that the longitudinal characteristic roots changed as wing stiffness varies. Particularly, when the stiffness is very small, the short period mode and the first bend mode are coupled and the phugoid is unstable. The pitch rate and the pitch angle feedback gains are smaller than flexible model. Therefore, relatively great adjustment should be made to fulfill the requirement of aeroelastic UAVs. To better reduce the disturbance of angle of attack and normal acceleration, the elevon should be employed to suppress the deformation of wing.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第4期573-579,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(11202162) 陕西省科技统筹创新工程计划项目(2015KTCQ01-78)资助
关键词 超柔性无人机 气动弹性 耦合 稳定性 机翼变形抑制 aeroelasticity, angle of attack, angular velocity, computer software, conceptual design, damping, degrees of freedom (mechanics), eigenvalues and eigenfuctions, feedback, flexible wings, flight dynamics, longitudinal control, matrix algebra, modal analysis, rigid wings, solar energy, stability, stiffness, unmanned aerial vehicles (UAV) coupled, highly flexible UAV, suppression of wing deformation
  • 相关文献

参考文献13

  • 1Rafael Palacios, Carlos E S Cesnik. Structural Models for Flight Dynamic Analysis of Very Flexible Aircraft [ R ]. AIAA- 2009-2403. 被引量:1
  • 2Brijesh Raghavan, Mayuresh Patil. Flight Dynamics of High Aspect-Ratio Flying Wings: Effect of Large Trim Deformation[ C]// AIAA Atmospheric Flight Mechanics Conference and Exhibit, Hilton Head, SC, 2007. 被引量:1
  • 3Kevin M Roughen, Oddvar O Bendiksen, Myles L Baker. Development of Generalized Aeroservoelastic Reduced Order Models [ R]. AIAA-2009-2491. 被引量:1
  • 4Woehrle T G, Costerus B W, Lee C L. Modal Analysis of PATHFINDER Unmanned Air Vehicle [ C ] ///IMAC-XIII Conference, 1995. 被引量:1
  • 5谢长川,吴志刚,杨超.大展弦比柔性机翼的气动弹性分析[J].北京航空航天大学学报,2003,29(12):1087-1090. 被引量:66
  • 6Mayuresh J Patil, Dewey H Hodges. Flight Dynamics of Highly Flexible Flying Wings [ J ]. Journal of Aircraft, 2006, 43 (6) : 1790-1798. 被引量:1
  • 7Su Weihua. Coupled Nonlinear Aeroelasticity and Flight Dynamics of Fully Flexible Aircraft[ D]. University of Michigan, 2008. 被引量:1
  • 8Cesnik Carlos E S, Su Weihua. Nonlinear Aeroelastic Modeling and Analysis of Fully Flexible Aircraft[ R]. AIAA-2005-2169. 被引量:1
  • 9Azoulay D, Karpel M. Characterization of Methods for Computation of Aeroservoelastic Response to Gust Excitation [ R ]. AIAA- 2006-1938. 被引量:1
  • 10Brijesh Raghavan, Mayuresh Patil. Flight Dynamics of High Aspeet-Ratio Flying Wings[ R]. AIAA-2006-6135. 被引量:1

二级参考文献4

  • 1伏欣.气动弹性力学原理[M].上海:上海科学技术文献出版社,1982.19-22. 被引量:7
  • 2谢长川, 杨超. 大展弦比飞机的几何非线性气弹问题[A]. 见: 第七届全国空气弹性学术交流会论文集[C], 2001Xie Changchuan, Yang Chao. Geometrical nonlinear aeroelastic problems of large aspect ratio wing[A]. In: The 7th national air elasticity proceeding[C], 2001(in Chinese) 被引量:1
  • 3Patil M J. Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft[D]. Atlanta: Georgia Institute of Technology, 1999 被引量:1
  • 4谢长川. 复合材料大展弦比飞机气动弹性研究[D]. 北京: 北京航空航天大学飞行器设计与应用力学系, 2003Xie Changchuan. Aeroelastic analysis of composite aircraft with high-aspect-ratio[D]. Beijing: Dept. of Flight Vehicle Design and Applied Mechanics, Beijing University of Aeronautics and Astronautics, 2003(in Chinese) 被引量:1

共引文献70

同被引文献40

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部