期刊文献+

纳米纤维素增强形状记忆聚氨酯材料的研究 被引量:4

Study on Cellulose Nanocrystals Reinforced Shape Memory Polyurethanes
下载PDF
导出
摘要 首先通过对纤维素微晶酸解得到纤维素纳米晶体(CNC),然后用其对聚氨酯(PU)进行增强改性,通过溶液法制备了形状记忆CNC/PU复合材料。通过透射电子显微镜观测了CNC的尺寸及分散情况,对CNC/PU复合材料进行了红外、力学性能、动态力学性能和形状记忆性能分析,并用扫描电子显微镜分析了复合材料的断面。结果表明,CNC在PU基体中分散良好,CNC的加入增加了与PU之间的相互作用,增强了PU的力学性能。CNC/PU复合材料的形状记忆性能优异。 Cellulose nanocrystals (CNCs) which were produced from commercial microcrystalline or-cellulose by acid hydrolysis were used to reinforce polyurethane (PU), and shape memory CNCs/PU composites were prepared by solution method. The sizes and dispersion of CNCs were observed by transmission electron microscopy. The mechanical properties, dynamic mechanical properties and shape memory properties of the CNCs/PU composites were investigated. The fracture surfaces of CNCs/PU composites were investigated dispersed in the PU matrix by scanning electron microscope. The results showed that CNCs were well and it enhanced the interaction with PU and the mechanical properties of the composites. The CNCs/PU composite showed excellent shape memory properties.
出处 《塑料工业》 CAS CSCD 北大核心 2015年第8期115-118,123,共5页 China Plastics Industry
基金 四川省应用基础研究计划资助项目(2013JY0017) 高分子材料工程国家重点实验室自主课题经费资助(sklpme2014-2-03)
关键词 形状记忆 纳米纤维素晶体 聚氨酯 复合材料 Shape Memory Cellulose Nanocrystals Polyurethane Composites
  • 相关文献

参考文献10

  • 1ABRAHAM, E, DEEPA B, POTHAN L, et al. Physico- mechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex [ J]. Cellulose, 2013, 20 (1) : 417-427. 被引量:1
  • 2WEI Z, SANDSTRORO M R, MIYAZAKI S. Shape- memory materials and hybrid composites for smart systems: Part I. Shape-memory materials [ J ]. J Mater Sci, 1998, 33 (15) : 3743-3762. 被引量:1
  • 3LENDLEIN A, LANGER R. Biodegradable elastic shape- memory polymers for potential biomedical applications [ J ]. Science, 2002, 296 (5573): 1673-1676. 被引量:1
  • 4NEUSS S, BLOMENKAMP I, STAINFORTH R, et al. The use of a shape-memory poly (ε-caprolactone) dimethacrylate network as a tissue engineering scaffold [ J ]. Biomaterials, 2009, 30 (9): 1697-1705. 被引量:1
  • 5LI C, ADAMCIK J, MEZZENGA R. Biodegradable nano- composites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties [ J ]. Nature Nanotechnol,2012, 7 (7): 421-427. 被引量:1
  • 6MANI G, FELDMAN M D, PATEL D, et al. Coronary stents: A materials perspective [ J]. Biomaterials, 2007, 28 (9): 1689-1710. 被引量:1
  • 7GALL K, DUNN M L, LIU Y, et al. Shape memory polymer nanocomposites [ J ]. Acta Materialia, 2002, 50 (20) : 5115-5126. 被引量:1
  • 8LIFF S M, KUMAR N, MCKINLEY G H. High- performance elastomeric nanocomposites via solvent-exchange processing [J]. Nature Mater, 2007, 6 (1): 76-83. 被引量:1
  • 9PEI A, MALHO J M, RUOKOLAINEN J, et al. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals [ J ]. Mac- romolecules, 2011, 44 (11) : 4422-4427. 被引量:1
  • 10GRANJA P L, DE JESO B, BAREILLE R, et al. Cellulose phosphates as biomaterials: In vitro biocompati- bility studies [ J ]. React Funct Polym, 2006, 66 ( 7 ) : 728 -739. 被引量:1

同被引文献59

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部