期刊文献+

基于社交网络的推荐模型研究

Research on recommendation model based on social network
下载PDF
导出
摘要 基于社交网络的社会化推荐的依据是社交网络中亲密关系的用户往往具有相似的兴趣爱好。当前基于社交网络的推荐没有充分地利用社交关系信息,导致预测精度较低和计算效率低、收敛速度慢。为了缓解数据稀疏以及提高推荐系统准确性,对社交网络提出了一种融合用户熟悉度和用户特征评分的推荐模型,充分利用了社交网络中的用户关系信息和特征信息。实验表明,给出的推荐算法相比传统的协同过滤算法明显提高了推荐精度。 The basis of social recommendation based on social networks is that users Of intimate relationships in social networks often have similar interests. Existing recommender approaches based on social trust relationships have not fully utilized such relationships and thus have low prediction accuracy or slow convergence speed. In order to improve the system accuracy and reduce data sparseness, we propose an improved recommendation model which blends user intimate rating and user characteristic rating and fully utilizes social relationships and characteristic information. The experiments show that the proposed algorithm is significantly improved compared with the traditional collaborative filtering algorithm.
作者 熊清华
出处 《计算机时代》 2015年第8期29-30,33,共3页 Computer Era
关键词 社交网络 推荐系统 用户熟悉度 用户特征评分 评分融合 social network recommendation system user intimate rating user characteristic rating rating blending
  • 相关文献

参考文献6

二级参考文献57

  • 1付韬,马春光,李迎涛,刘东亮.基于开放平台的OAuth认证授权技术研究[J].保密科学技术,2012,0(9):58-62. 被引量:3
  • 2许志敏,薛质.授权认证系统的应用研究[J].中国传媒科技,2006(4):28-31. 被引量:2
  • 3Voorhees E. ,Harrman D., Overview of the Seventh Text Retrieval Conference[A].In Proceedings seventh Text Retrieval Conference[C].1999,1 - 24,NST Press. 被引量:1
  • 4Segal R.,Kephart J., Mailcat: An Intenigent Assistant for Organizing e-Mail[A], In Proceedings of the Third International Conferenee on Autonomous Agents[C].1999,276- 282,ACM Press. 被引量:1
  • 5Oard D., Marchionini G., A Conceptual Framework for text faltering[A]. Http://www. cs. umd. edu/TRs/authors/Gary-Marchionini. html ,February,24,1997. 被引量:1
  • 6Sarwar. B, Katypis. G. ,Konstan, J.,et al, Item-based collaborative filtering reconmmendation algorithms[A],In:proceedings of the lOth International world Wide Web Conferenee[C] ,2001,285- 295. 被引量:1
  • 7Konstan J. ,Miller B., Maltz D. ,et al, GroupLen: Collaborative Filtering for Usenet News[A].Communications of the ACM[C].1997,33(3) :77 - 87. 被引量:1
  • 8Goossen F,Jntema W, Frasincar F, et al. News Personalization using the CF-IDF Semantic Recommender[C] //Proc of the In- ternational Conference on Web Intelligence, Mining and Seman- tics. 2011. 被引量:1
  • 9Toutanova K, Klein D, Manning C D, et al. Feature-Rich Part-o Speech Tagging with a Cyclic Dependency Network[C] //Proc of " NAACL'. 2003 173-180. 被引量:1
  • 10Jensen A S, Boss N S. Dry similarity[OL], http://damn, dk/ similarity/javadoc/model/similarity/Lesk, html,2008. 被引量:1

共引文献453

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部