期刊文献+

基于分层聚类相关反馈算法的图像检索技术研究

On the image retrieval method based on hierarchical clustering relevance feedback
下载PDF
导出
摘要 基于内容的图像检索研究的目的是实现自动地、智能地检索图像,研究的对象是使查询者可以方便、快速、准确地从图像数据库中查找特定图像的方法和技术。通过把分层聚类策略与传统的相关反馈算法相结合,提出一种新的图像检索方式,并通过实验加以验证。 The present paper aims to: (1) integrate hierarchical clustering with the traditional relevance feedback to derive a new image retrieval method, and (2) test its capability and feasibility, and its advantages over other methods. The new method is tested to be capable of retrieving a certain image with more convenience, greater rapidity and higher accuracy, and thus excels in its higher efficiency in computing, and higher precision ratio, accuracy and efficiency in retrieving.
作者 张戎秋
出处 《淮南师范学院学报》 2015年第3期26-28,共3页 Journal of Huainan Normal University
基金 淮南师范学院科学研究项目(2013XJ61) 淮南师范学院重点科学研究项目(2012LK27ZD) 安徽省高校省级自然科学研究项目(KJ2012B173)
关键词 图像检索 分层聚类 相关反馈算法 image retrieval hierarchical clustering relevance feedback
  • 相关文献

参考文献5

  • 1章毓晋著..基于内容的视觉信息检索[M].北京:科学出版社,2003:494.
  • 2牛蕾,倪林.基于内容的图像检索中的相关反馈算法[J].计算机工程与应用,2004,40(32):65-70. 被引量:7
  • 3张红云,刘向东,段晓东,苗夺谦,马垣.数据挖掘中聚类算法比较研究[J].计算机应用与软件,2003,20(2):5-6. 被引量:35
  • 4R.Mojena, "Hierarchical grouping methods and stopping rules: An evaluation", The Computer Journal, Vol.20, No.4,1977, pp.359-363. 被引量:1
  • 5Ja-Hwung Su, Wei-Jyun Huang, S. Yu, Fellow, and Vincent S. Tseng, Member, "Efficient Relevance Feedback for ontent-Based Image Retrieval by Mining User Navigation Patterns", IEEE Transactions On Knowledge And Data Engineering, Vol.23, No.3, pp.360-372. 被引量:1

二级参考文献59

  • 1[1]Hang T. BIRCH. An efficient data clustering method for very large database. In: Proc of the ACM SIGMOD International Conf. on Management of Data Montreal: ACM press, 1996,83 ~ 94. 被引量:1
  • 2[2]Udipto Guha, Rastogi R, Shim K. CURE: A clustering algorithm for large databases. Technical report, Bell Laboratories, Mucray Hill, 1997,67 ~ 78,1998,73 ~ 84. 被引量:1
  • 3[3]Martin Ester, Hans- Peter Kriegel, Jorg Sander, Xiaowei Xu. A desitybased algorithm for Discovery clusters in large spatial databs e with noise.In Proc. Of 2th International Conference on knowledge Discovery in Databases and Data Mining, Portland, Oregon, August, 1996. 被引量:1
  • 4[4]Gehrke J,Agrawal R,Gunopulos D,Raghavan P.Automatic Subspace Glustering of High Dimensional Data for Data Mining Applications. ACM SIGMOD, 1998,72(2) :94 ~ 105. 被引量:1
  • 5[5]Christopher J., Philip K., Systems for Knowledge Discovery in Databases.IEEE Trans. On Knowledge and Data Engineering. 1993,5 (6) :903 ~ 913. 被引量:1
  • 6[6]OPERSKI K., Han J., Adhikary J., Mining Knowledge in geographic data. In Comm. ACM 1997. 被引量:1
  • 7[7]Fayyad U., Haussler D., Mining Scientific Data, Communication of the ACM, 1996,39(11). 被引量:1
  • 8[8]Inmon W. ,Building the Data Warehouse. Boston:QED Technical Publishing Croup, 1992,163 ~ 312. 被引量:1
  • 9[9]Hongjun Lu, Hiroshi Motoda, Huan Liu, KDD: Techniques and Application. 1997,3 ~ 12. 被引量:1
  • 10[10]Orlando, Florida, Data Mining and Knowledge Discovery:Theory, Tools, and Technology. Proceedings of SPIE. Ⅱ,2000,259 ~ 264. 被引量:1

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部