期刊文献+

基于代价地图和最小树的移动机器人多区域覆盖方法 被引量:5

Multi-Region Coverage Method Based on Cost Map and Minimal Tree for Mobile Robot
原文传递
导出
摘要 提出一种基于代价地图和最小树的多区域覆盖方法.首先,确定先验静态地图的栅格代价,并将静态地图转化成动态代价地图;然后,将代价地图分割成若干个区域块,对区域块再作Boustrophedon单元分割处理,得到子区域信息;最后,根据子区域间的邻接关系构建图,图中的各节点代表一个子区域.将基于最小树的子区域规划算法应用于该图得到子区域规划序列,应用基于代价地图和Dijkstra算法的区域转移算法得到区域间转移路径,子区域内使用往返覆盖策略,以此实现区域的全覆盖.将本文提出的多区域覆盖方法在线应用于多种结构场景中,实验结果表明,相对于传统的区域覆盖方法,本文方法可以有效提高移动机器人区域覆盖的效率. A multi-region coverage method based on cost map and minimal tree is proposed. First, the cost of cells in priori static map is determined, and then the static map is turned into a dynamic cost map. Then, the cost map is divided into several regions, which are decomposed into sub-regions using Boustrophedon cellular decomposition. Finally, a graph is built according to the adjacency relationship between the sub-regions, in which each node represents a sub-region. The sub-region planning method based on minimal tree is applied to the graph to generate a sub-region planning sequence, the algorithm based on the cost map and Dijkstra algorithm is used to plan a transfer path among different regions, and back and forth coverage strategy is applied to every sub-region to complete the coverage. The multi-region coverage method is applied to completing coverage in different environments on-line, and experimental results show that our algorithm has advantages in improving the efficiency of coverage over traditional methods.
出处 《机器人》 EI CSCD 北大核心 2015年第4期435-442,共8页 Robot
基金 国家自然科学基金资助项目(61375079)
关键词 移动机器人 区域覆盖 代价地图 最小树 DIJKSTRA算法 mobile robot region coverage cost map minimal tree Dijkstra algorithm
  • 相关文献

参考文献21

  • 1Acar E U, Choset H, Zhang Y G,et al. Path planning for roboticdemining: Robust sensor-based coverage of unstructured envi-ronments and probabilistic methods [J]. International Journal ofRobotics Research, 2003, 22(7/8): 441-466. 被引量:1
  • 2Najjaran H, Kircanski N. Path planning for a terrain scannerrobot[C]//31st International Symposium on Robotics. Ottawa,Canada: Canadian Federation for Robotics, 2000: 132-137. 被引量:1
  • 3Zuo L C, Huang Y Y, Hall E L. Region filling operationswith random obstacle avoidance for mobile robots [J]. Journalof Robotic Systems, 1988, 5(2): 87-102. 被引量:1
  • 4Bosse M,Nourani-Vatani N, Roberts J. Coverage algorithms foran under-actuated car-like vehicle in an uncertain environment[C]//IEEE International Conference on Robotics and Automa-tion. Piscataway, USA: IEEE, 2007: 698-703. 被引量:1
  • 5Ollis M, Stentz A. Vision-based perception for an automatedharvester[C]//IEEE International Conference on Robotics andAutomation. Piscataway, USA: IEEE, 1997: 1838-1844. 被引量:1
  • 6Oksanen T, Visala A. Coverage path planning algorithms for a-gricultural field machines [J]. Journal of Field Robotics, 2009,26(8): 651-668. 被引量:1
  • 7Farsi M, Ratcliff K, Johnson P J, et al. Robot control systemfor window cleaning[C]//American Control Conference. Piscat-away, USA: IEEE, 1994; 994-995. 被引量:1
  • 8Jin X,Ray A. Coverage control of autonomous vehiclesfor oil spill cleaning in dynamic and uncertain environ-ments[C]//American Control Conference. Piscataway, USA:IEEE,2013: 2594-2599. 被引量:1
  • 9Jin X, Ray A. Navigation of autonomous vehicles for oil spillcleaning in dynamic and uncertain environments!;J]. Internation-al Journal of Control, 2014, 87(4): 787-801. 被引量:1
  • 10Song J N, Gupta S, Hare J, et al. Adaptive cleaning ofoil spills by autonomous vehicles under partial informa-tion[C]//MTS/IEEE Oceans Conference. Piscataway, USA:IEEE, 2013: 1-5. 被引量:1

二级参考文献27

  • 1肖忠晖,卢振荣,张谦.简单多边形凸单元剖分的编码算法[J].计算机学报,1996,19(6):477-480. 被引量:27
  • 2Althaus P,Christensen H I.Smooth task switching through behaviour competition[J].Robotics and Autonomous Systems,2003,44(3/4):241-249. 被引量:1
  • 3Beom H R,Cho H S.A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning[J].IEEE Trans on Systems,Man and Cybernetics,1995,25(3):464-477. 被引量:1
  • 4Ranganathan P,Hayet J B,Devy M,et al.Topological navigation and qualitative localization for indoor environment using multi-sensory perception[J].Robotics and Autonomous Systems,2002,41:137-144. 被引量:1
  • 5Sutton R S,Barto A G.Reinforcement learning:an introduction[M].Cambridge,MA:MIT Press,1998:3-9. 被引量:1
  • 6Ye C,Yung N H C,Wang D W.A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance[J].IEEE Transactions on Systems,Man and Cybernetics,2003,33(1):17-27. 被引量:1
  • 7Kondo T,Ito K.A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control[J].Robotics and Autonomous Systems,2004,46(2):111-124. 被引量:1
  • 8Barto A G,Mahanevan S.Recent advances in hierarchical reinforcement learning[J].Discrete Event Dynamic Systems:Theory and Applications,2003,13(4):41-77. 被引量:1
  • 9Sutton R,Precup D,Singh S.Between MDPs and semi-MDPs:a framework for temporal abstraction in reinforcement learning[J].Artificial Intelligence,1999,112(1/2):181-211. 被引量:1
  • 10Dietterich T G.Hierarchical reinforcement learning with the MAXQ value function decomposition[J].Journal of Artificial Intelligence Research,2000,13(1):227-303. 被引量:1

共引文献4

同被引文献32

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部