期刊文献+

L^1→L^q Poincare Inequalities for 0<q<1 Imply Representation Formulas

L^1→L^q Poincare Inequalities for 0<q<1 Imply Representation Formulas
原文传递
导出
摘要 Civen two doubling measures μ and v in a metric apace (S.p)of homogeneous type. let B_0 S be a given ball. It has been a well-known result bv now (see)[1 4])theat the validity of an L^1→L^1 Poincaré inequality of the following form: f_B|f-f_B|dv≤cr(B)f_Bgdμ. for all metric balls B B_0 S, implies a variant of representation formula of fractonal integral type: |f(x)-f_(B(11))|≤C integral from n=B_(11) g(y)p(x, y)/μ(B(x, p(x, y)))dμ(y)+C(r(B_0))/(μ(B_0))integral from n=B_0 g(y)dμ(y). One of the main results of this paper shows that an L^1 to L^q Poincaré inequality for some 01, i.e.. (f_B|f-f_B|~q dv)^(1/q)≤cr(B) f_B gdμ, for all metric balls B B_0. will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition. sup_(λ>0)(λv({x ∈ B:|f(x)-f_B|>λ}))/v(B)≤Gr (B)f_B gdμ. also implies the same formula. Analogous theorems related to high-order Poincaréinequalities and Sobolev spaces in metric spaces are also proved. Civen two doubling measures μ and v in a metric apace (S.p)of homogeneous type. let B_0 S be a given ball. It has been a well-known result bv now (see)[1 4])theat the validity of an L^1→L^1 Poincaré inequality of the following form: f_B|f-f_B|dv≤cr(B)f_Bgdμ. for all metric balls B B_0 S, implies a variant of representation formula of fractonal integral type: |f(x)-f_(B(11))|≤C integral from n=B_(11) g(y)p(x, y)/μ(B(x, p(x, y)))dμ(y)+C(r(B_0))/(μ(B_0))integral from n=B_0 g(y)dμ(y). One of the main results of this paper shows that an L^1 to L^q Poincaré inequality for some 01, i.e.. (f_B|f-f_B|~q dv)^(1/q)≤cr(B) f_B gdμ, for all metric balls B B_0. will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition. sup_(λ>0)(λv({x ∈ B:|f(x)-f_B|>λ}))/v(B)≤Gr (B)f_B gdμ. also implies the same formula. Analogous theorems related to high-order Poincaréinequalities and Sobolev spaces in metric spaces are also proved.
作者 PEREZ Carlos
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第1期1-20,共20页 数学学报(英文版)
基金 The first author is supported partly by the U.S. National Science Foundation Grant Nos. DMS96-22996 and DMS99-70352. supported partly by DGICYT Grant PB940192. Spain supported partly by NATO Collaborative Research G
关键词 Sobolev spaces Representation formulas High-order derivatives Vector fields Metric spaces POLYNOMIALS Doubling measures Poincare inequalities Sobolev spaces Representation formulas High-order derivatives Vector fields Metric spaces Polynomials Doubling measures Poincare inequalities
  • 相关文献

参考文献1

二级参考文献9

  • 1Alexander Nagel,Elias M. Stein,Stephen Wainger.Balls and metrics defined by vector fields I: Basic properties[J].Acta Mathematica.1985(1) 被引量:1
  • 2Peter W. Jones.Quasiconformal mappings and extendability of functions in sobolev spaces[J].Acta Mathematica.1981(1) 被引量:1
  • 3Sun B,Suo Z.A finite element method for simulating interface motion-Ⅱ.Large shape change due to surface diffusion[].Acta Materialia.1997 被引量:1
  • 4Mullins WW.Theory of thermal grooving[].Journal of Applied Physics.1957 被引量:1
  • 5Nichols FA,Mullins WW.Morphological changes of surface of revolution due to capillarity-induced surface diffusion[].Journal of Applied Physics.1965 被引量:1
  • 6Pan J,Cocks ACF.A numerical technique for the analysis of coupled surface and grain-boundary diffusion[].Acta Materialia.1995 被引量:1
  • 7Mullins WW.Flattening of a nearly plane solid surface due to capillarity[].Journal of Applied Physics.1959 被引量:1
  • 8Cline HE.Shape instabilities of eutectic composites at elevated temperatures[].Acta Metallurgica et Materialia.1971 被引量:1
  • 9Huang Jianming,Yang Wei.Three-dimensional evolution of interfaces under evaporation-condensation kinetics:a finite-element simulation[].Modelling and Simulation in Materials Science and Engineering.1999 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部