期刊文献+

The Regularity of Lagrangians f(x,ξ) = |ξ|^(α(x)) with Holder Exponents α(x) 被引量:2

The Regularity of Lagrangians f(x,ξ) = |ξ|^(α(x)) with Holder Exponents α(x)
原文传递
导出
摘要 In this paper the regularity of the Lagrangians f(x,ζ)=|ζ|<sup>α(x)</sup> (1【α<sub>1</sub> α(x) α<sub>2</sub>【 +∞) is studied. Our main result: If α(x) is Holder continuous, then the Lagrangian f(x,ζ)=|ζ|<sup>α(x)</sup> is regular. This result gives a negative answer to a conjecture of V. Zhikov. In this paper the regularity of the Lagrangians f(x,ζ)=|ζ|<sup>α(x)</sup> (1&lt;α<sub>1</sub> α(x) α<sub>2</sub>&lt; +∞) is studied. Our main result: If α(x) is Holder continuous, then the Lagrangian f(x,ζ)=|ζ|<sup>α(x)</sup> is regular. This result gives a negative answer to a conjecture of V. Zhikov.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第3期254-261,共8页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China.
关键词 LAGRANGIANS INTEGRALS Sobolev spaces REGULARITY Lagrangians Integrals Sobolev spaces Regularity
  • 相关文献

同被引文献19

  • 1Acerbi E,Mingione G. Regularity results for a class of functionals with nonstandard growth[J]. Arch Rational Mech Anal, 2001,156(2): 121. 被引量:1
  • 2Coscia A,Mingione G. Holder continuity of the gradient of p(x) harmonic mappings[J]. C R Acad Sci Paris Sér I Math,1999,328(4) :363. 被引量:1
  • 3Fan X L. Regularity of nonstandard Lagrangians f(x,ξ)[J]. Nonlinear Anal TMA,1996,27(6) :669.[S]Fan X L,Zhao D. Regularity of minimizers of variational integrals with continuous p(x)-growth conditions[J]. Chinese Ann of Math(A), 1996,17(5) :557. 被引量:1
  • 4Fan X L,Zhao D. A class of De Giorgi type and Holder continuity[J]. Nonlinear Anal TMA,1999,36(3) :295. 被引量:1
  • 5Fan X L,Shen J S,Zhao D. Sobolev embedding theorems for spaces Wk,p(x) [J]. J Math and Appl,2001,262(2) :749. 被引量:1
  • 6Fan X L,Zhao D. On the spaces Lp(x) (Ω) and Wm,p(x) (Ω)[J]. J Math Anal Appl,2001,263(2) i424. 被引量:1
  • 7Fan X L, Zhao Y Z, Zhao D. Compact imbedding theorems with symmetry of Strauss-Lions type for the spaces W1,p(x) [J]. J Math and Appl,2001,255(1) :333. 被引量:1
  • 8Fan X L, Zhang Q H. Existence of solutions for p(x)-Laplacian Dirichlet problem[J]. Nonlinear Anal,2003,52(8): 1843. 被引量:1
  • 9Fan X L,Zhao Y Z,Zhang Q H. A strong maximum principle for p(x)-Laplace equations[J]. Chinese J Cont Math,2003,24A(4) :495. 被引量:1
  • 10Fan X L,Zhang Q H,Zhao D. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. J Math Anal Appl,2005,302(2):306. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部