期刊文献+

Monoidal Category Approach to Dual Hom-quasi-Hopf Algebras 被引量:2

Monoidal Category Approach to Dual Hom-quasi-Hopf Algebras
下载PDF
导出
摘要 In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra. In this paper, we categorify a Hom-associative algebra by imposing the Homassociative law up to some isomorphisms on the multiplication map and requiring that these isomorphisms satisfy the Pentagon axiom, and obtain a 2-Hom-associative algebra. On the other hand, we introduce the dual Hom-quasi-Hopf algebra and show that any dual Homquasi-Hopf algebras can be viewed as a 2-Hom-associative algebra.
出处 《Chinese Quarterly Journal of Mathematics》 2015年第2期218-226,共9页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(11047030, 11171055) Supported by the Grant from China Scholarship Counci1(2011841026)
关键词 Monoidal category 2-Hom-associative algebra dual Hom-quasi-Hopf algebra Monoidal category 2-Hom-associative algebra dual Hom-quasi-Hopf algebra
  • 相关文献

参考文献2

二级参考文献27

  • 1Loday, J. L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann., 296, 139-158 (1993). 被引量:1
  • 2Hartwig, J., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using a-derivation. J. Algebra, 295, 314 361 (2006). 被引量:1
  • 3Makhlouf, A., Silvestrov, S.: Notes on formal deformations of Horn-associative and Horn-Lie algebras. Forum Math., 22(4), 715 739 (2010). 被引量:1
  • 4Gao, Y.: The second Leibniz homology group for Kac-Moody Lie algebras. Bull. Lond. Math. Soc., 32, 25-33 (2000). 被引量:1
  • 5Gao, Y.: Leibniz homology of unitary Lie algebras. J. Pure Appl. Algebra, 140, 33 56 (1999). 被引量:1
  • 6Wang, Q., Tan, S.: Leibniz central extension on a Block Lie algebra. Algebra CoUoq., 14(4), 713-720 (2007). 被引量:1
  • 7Liu, D., Lin, L.: On the toroidal Leibniz algebras. Acta Mathematica Sinica, English Series, 24(2), 227-240 (2008). 被引量:1
  • 8Yau, D.: Horn-algebras as deformations and homology. J. Lie Theory, 19, 409-421 (2009). 被引量:1
  • 9Loday, J. L.: Dialgebras, Lecture Notes in Mathematics, Vol. 1763, Springer, 2001, 7-66. 被引量:1
  • 10Casas, J., Datuashvili, T.: Noncommutative Leibniz-Poission algebras. Comm. Algebra, 34, 2507-2530 (2006). 被引量:1

共引文献20

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部