期刊文献+

木质素基二氧化硅复合纳米颗粒的制备及在高密度聚乙烯中的应用 被引量:4

Preparation of lignin-based silica composite nanoparticles and its application in HDPE
下载PDF
导出
摘要 针对目前木质素基Si O2复合纳米颗粒聚集严重及木质素负载量低,难以应用的现状,以碱木质素为主要原料,先通过磷酸化改性制备磷酸化碱木质素,再利用酸析共沉法将1.2份磷酸化碱木质素与1份纳米Si O2(均为质量份)复合制备了木质素-Si O2复合纳米颗粒,并探究复合颗粒对高密度聚乙烯(HDPE)力学性能的影响。FT-IR、XPS、TEM、TG和静态接触角测试结果表明,木质素主要以氢键作用与Si O2结合;与原料二氧化硅相比,复合颗粒的粒径从25 nm增加到40 nm,聚集程度明显减弱;复合纳米颗粒中木质素占47%(质量分数);表面的疏水性增强,有利于复合颗粒在高密度聚乙烯中均匀分散,显著提高了HDPE的拉伸强度。与碱木质素/HDPE复合材料相比,木质素-Si O2复合纳米颗粒/HDPE复合材料的拉伸强度和断裂拉伸率分别提高了48.68%和73.57%。 According to the presence situation that lignin-based SiO2composite nanoparticles are difficult for industry application, owing to serious aggregation and low lignin capacity, phosphatized alkali lignin (PAL) was prepared through phosphorylation reaction using alkali lignin (AL) from the alkaline pulping spent liquor of poplar as main material. The lignin/silica composite nanoparticles (L-SiO2) was combined from 1 part nanosilica with 1.2 part (by mass) synthesized PAL by acidulation co-precipitation method. Subsequently, L-SiO2 was added into HDPE to prepare L-SiO2/HDPE composites. Results of FT-IR, XPS, TEM, TG and static contact angle showed that PAL was bonded to silica through hydrogen bonds. L-SiO2 accounted for 47% (mass) LQA. Compared to crude silica, the particle size of L-SiO2 increased from 25 to 40 nm and the agglomeration of particle decreased noticeably. More importantly, the surface of L-SiO2 became more hydrophobic, which made them disperse better in HDPE. The tensile strength and elongation at break of prepared L-SiO2/HDPE composites were 48.68% and 73.57%, respectively, higher than those of AL/HDPE.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第8期3255-3261,共7页 CIESC Journal
基金 国家国际科技合作专项项目(2013DFA41670) 国家自然科学基金项目(21436004)~~
关键词 碱木质素 二氧化硅 磷酸化碱木质素 纳米材料 高密度聚乙烯 alkali lignin silica phosphatized alkali lignin nanomaterials HDPE
  • 相关文献

参考文献36

  • 1Jesionowski T, Klapiszewski ?, Milczarek G. Kraft lignin and silica as precursors of advanced composite materials and electroactive blends [J]. Journal of Materials Science, 2014, 49 (3): 1376-1385. 被引量:1
  • 2Stewart D. Lignin as a base material for materials applications: chemistry, application and economics [J]. Industrial Crops and Products, 2008, 27 (2): 202-207. 被引量:1
  • 3Yang D, Wu X, Qiu X, et al. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase [J]. Bioresource Technology, 2014, 155: 418-421. 被引量:1
  • 4Kim S H, Ahn S H, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly (ethylene 2, 6-naphthalate) [J]. Polymer, 2003, 44 (19): 5625-5634. 被引量:1
  • 5Shang X, Zhu Z, Yin J, et al. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent [J]. Chemistry of Materials, 2002, 14 (1): 71-77. 被引量:1
  • 6Nguyen T, Wu J, Doan V, et al. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites [J]. Science, 2000, 288 (5466): 652-656. 被引量:1
  • 7Moon S, Lin A, Kim B H, et al. Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles [J]. Journal of Non-Crystalline Solids, 2008, 354 (2): 602-606. 被引量:1
  • 8Hayashi J, Shoji T, Watada Y, et al. Preparation of silica-lignin xerogel [J]. Langmuir, 1997, 13 (15): 4185-4186. 被引量:1
  • 9Saad R, Hawari J. Grafting of lignin onto nanostructured silica SBA-15: preparation and characterization [J]. Journal of Porous Materials, 2013, 20 (1): 227-233. 被引量:1
  • 10Qu Y, Tian Y, Zou B, et al. A novel mesoporous lignin/silica hybrid from rice husk produced by a sol-gel method [J]. Bioresource Technology, 2010, 101 (21): 8402-8405. 被引量:1

二级参考文献97

共引文献48

同被引文献24

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部