期刊文献+

管壳式自热型氨分解反应器模拟分析 被引量:4

Modeling and analysis of concentric self-thermal fixed-bed reactor for ammonia decomposition
下载PDF
导出
摘要 建立了管壳式自热型氨分解反应器,其中管内为拟均相催化反应,管外壳程为考虑气膜传递阻力的非均相催化反应。通过模拟比较和分析了氨气和氢气-空气混合物并流与逆流操作的反应结果。在并流操作中,氢燃烧产生的高温正好与高氨气浓度对应,氢燃烧热被充分用于氨分解反应,因此反应效率要显著高于逆流操作。与等温反应器的比较分析表明,在自热和高转化率条件下并流操作的效率与等温操作效果很接近。 A concentric self-thermal reactor, in which ammonia decomposition is carried out in the center tube and hydrogen combustion takes place in the annulus was analyzed by modeling and simulation. The performance of the reactor with hydrogen-air flow co-current or counter-current to the ammonia flow was investigated and compared with that under isothermal condition. In the co-current mode, the high concentration of ammonia corresponds with the high heat generation rate of hydrogen combustion, while in the counter-current mode, the combustion heat is firstly used to increase the temperature of the hydrogen-air flow then used by ammonia decomposition. Therefore, the reactor with co-current flow is much more efficient in terms of the high conversion and the full use of hydrogen combustion heat. The co-current flow reactor performs as well as an isothermal reactor when a high conversion is realized.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第8期3169-3176,共8页 CIESC Journal
基金 国家自然科学基金项目(21306046) 高等学校学科创新引智计划(B08021)~~
关键词 化学反应器 数学模拟 制氢 氨分解 并流操作 chemical reactor mathematical modeling hydrogen production ammonia decomposition co-current flow pattern
  • 相关文献

参考文献23

  • 1Dunn S. Hydrogen futures: toward a sustainable energy system [J]. International Journal of Hydrogen Energy, 2002, 27 (3): 235-264. 被引量:1
  • 2Choudhary T V, Sivadinarayana C, Goodman D W. Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia [J]. Chemical Engineering Journal, 2003, 93 (1): 69-80. 被引量:1
  • 3Amphlett J C, Evans M J, Jones R A, et al. Hydrogen production by the catalytic steam reforming of methanol (Ⅰ): The thermodynamics [J]. The Canadian Journal of Chemical Engineering, 1981, 59 (6): 720-727. 被引量:1
  • 4Lin Y M, Rei M H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor [J]. Catalysis Today, 2001, 67 (1): 77-84. 被引量:1
  • 5Sohn J M, Chang Byun Y, Yeon Cho J, et al. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol [J]. International Journal of Hydrogen Energy, 2007, 32 (18): 5103-5108. 被引量:1
  • 6Tan ?, Ma?alac? E, ?nsan Z I, et al. Design of a methane processing system producing high-purity hydrogen [J]. International Journal of Hydrogen Energy, 2008, 33 (20): 5516-5526. 被引量:1
  • 7Metkemeijer R, Achard P. Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell [J]. International Journal of Hydrogen Energy, 1994, 19 (6): 535-542. 被引量:1
  • 8Zhang J, Xu H, Li W. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes [J]. Journal of Membrane Science, 2006, 277 (1): 85-93. 被引量:1
  • 9di Carlo A, Dell'Era A, Del Prete Z. 3D simulation of hydrogen production by ammonia decomposition in a catalytic membrane reactor [J]. International Journal of Hydrogen Energy, 2011, 36 (18): 11815-11824. 被引量:1
  • 10Li G, Kanezashi M, Yoshioka T, et al. Ammonia decomposition in catalytic membrane reactors: simulation and experimental studies [J]. AIChE Journal, 2013, 59 (1): 168-179. 被引量:1

二级参考文献16

  • 1梅红,银凤翔,陈标华,刘辉,季生福,李成岳.用于吸/放热反应耦合的金属基整体式催化反应器性能模拟[J].化工学报,2006,57(8):1904-1910. 被引量:2
  • 2Chen Guangwen, Li Shulian, Li Hengqiang, Jiao Fengjun, Yuan Quan. Methanol oxidation reforming over a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst in a monolithic reactor [J]. Catalysis Today, 2007, 125 (1/2): 97 102. 被引量:1
  • 3Roy S, Heibel A K, Liu W, Boger T. Design of monolithic catalysts for multiphase reactions [J]. Chem. Eng. Sci. , 2004, 59 (5): 957- 966. 被引量:1
  • 4Mei Hong, Li Chengyue, Liu Hui. Simulation of heat transfer and hydrodynamics for metal structured packed bed [J]. Catalysis Today, 2006, 105 (8/4): 689-696. 被引量:1
  • 5Mei Hong, Li Chengyue, Ji Shengfu, Liu Hui. Modeling of a metal monolith catalytic reactor for methane steam reforming-combustion coupling [ J ]. Chem. Eng. Sci. , 2007, 62 (16): 4294- 4303. 被引量:1
  • 6Wu Pingyi, Li Xiuiin, Ji Shengfu, Lang Ban, Fabien Habimana, Li Chengyue. Steam reforming of methane to hydrogen over Ni based metal monolith catalysts [J]. Catalysis Today, 2009, 146 (1/2): 82-86. 被引量:1
  • 7Zhao Fuzhen, Ji Shengfu, Wu Pingyi, Li Zhenfeng, Li Chengyue. Catalytic oxidation of CO over Cux Ce1-xO2- x/ SBA-15/FeCrAl monolithic catalysts[J]. Catalysis Today, 2009, 147 (Supplement 1): S215-S219. 被引量:1
  • 8Yin Fengxiang, J i Shengfu, Zhao Fuzhen, Zhou Zhongliang, Li Chengyue. Catalytic combustion of methane over Pd/SBA 15/Al2O3/fecral catalysts [J]. Studies in Surface Science and Catalysis, 2007, 167:1-6. 被引量:1
  • 9Yin Fengxiang, Ji Shengfu, Zhao Fuzheng, Zhou Zhongliang, Zhu Jiqin, Li Chengyue. Pd/Ce1-xZrxO2/SBA- 15 catalysts., preparation and catalytic properties for methane combustion [J]. Studies in Surface Science and Catalysis, 2007, 170: 1380-1385. 被引量:1
  • 10Yin Fengxiang, Ji Shengfu, Mei Hong, Zhou Zhongliang, Li Chengyue. Coupling of highly exothermic and endothermic reactions in a metallic monolith catalyst reactor: a preliminary experimental study [J].Chem. Eng. J., 2009, 155 (1/2): 285-291. 被引量:1

共引文献1

同被引文献21

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部