期刊文献+

基于EnFCM的海量图像聚类分割算法的并行研究 被引量:3

Paralleled segmentation cluster algorithm based on En FCM for large-scale image
下载PDF
导出
摘要 图像分割的处理速度成为大规模图像数据处理的瓶颈。本文提出一种基于En FCM的图像聚类分割模型,直接对图像像素的灰度级进行聚类,能显著提高图像聚类分割的处理速度。为进一步提高处理速度,结合En FCM图像聚类分割模型特点,设计了三种并行优化策略——纯MPI并行方法、MPI+Open MP混合编程方法和CUDA并行架构方法 ,使其适合于大规模图像处理。实验结果表明,提出的三种并行优化策略都取得良好的加速效果。 The processing speed of image segmentation is the bottleneck for large image data processing. An image clustering segmentation model is proposed based on En FCM. It directly clusters grayscale of image pixel, clustering can significantly improve the image segmentation processing speed. In order to further improve the processing speed, three parallel design optimization strategies are designed by combining model features of En FCM image clustering segmentation, they are pure MPI parallel method,MPI + Open MP hybrid programming and CUDA parallel architecture. These parallel methods are suitable for large-scale image processing. Experimental results show that the proposed parallel optimization strategies have achieved good acceleration effect.
出处 《微型机与应用》 2015年第15期55-58,共4页 Microcomputer & Its Applications
基金 茂名市科技计划项目(2014015)
关键词 图像聚类分割 FCM算法 MPI+Open MP CUDA image segmentation clustering FCM algorithm MPI+Open MP CUDA
  • 相关文献

参考文献10

二级参考文献93

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2谢志勇,张铁中.基于RGB彩色模型的草莓图像色调分割算法[J].中国农业大学学报,2006,11(1):84-86. 被引量:38
  • 3沈占锋,骆剑承,陈秋晓,黄光玉,盛昊.高分辨率遥感影像并行处理数据分配策略研究[J].哈尔滨工业大学学报,2006,38(11):1968-1971. 被引量:29
  • 4ZALIK K R, ZALIK B. A sweep-line algorithm for spatial clustering [ J ]. Advances in Engineering Software, 2009 (40) : 445 - 451. 被引量:1
  • 5MUKHERJEE D P, LEVNER Y P, ZHANG H. Ore image segmentation by learning image and shape features [ J]. Pattern Recognition Letters, 2009 (30) : 615 - 622. 被引量:1
  • 6SHEN Z, LUO J, HUANG G, et al. Distributed computing model for processing remotely sensed images based on grid computing [ J ]. Information Sciences, 2007 (177): 504 -518. 被引量:1
  • 7INNOCENTI E, SILVANI X, MUZYA A, et al. A software framework for fine grain parallelization of cellular models with OpenMP: Application to fire spread [ J]. Environmental Modelling & Software, 2009 ( 24 ) : 819 - 831. 被引量:1
  • 8COMANICIU D, MEER P. Mean Shift: A robust approach toward feature space analysis [ J ]. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2002,24(5). 603-619. 被引量:1
  • 9CHEN H F, MEER P. Robust regression with projection based M-estimators [ C]//Proceedings of the Ninth IEEE international Conference on Computer Version. Washington : IEEE Computer Society, 2003 : 878 - 885. 被引量:1
  • 10Amazon SimpleDB. http://aws, amazon, com/simpledb/, 2011-8-10. 被引量:1

共引文献170

同被引文献23

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部