期刊文献+

序贯径向基模型在气动热分析中的应用

The Application of Sequential Radial Basis Function in Aerodynamic Heating Analysis of Hypersonic Vehicle
原文传递
导出
摘要 针对高超声速飞行器气动热分析中采用CFD仿真计算耗费大,不符合概念设计阶段要求进行大量方案评估的问题,采取径向基近似模型代替高精度的CFD仿真模型,大大减少了高超声速飞行器气动热分析时的计算量。提出了一种新的序贯加点策略,将其应用于径向基近似建模过程中,提高了径向基近似模型的精度。将该近似模型应用于高超声速飞行器驻点气动热分析中,和普通径向基近似模型对比可知,本文提出的序贯径向基近似模型能够以较小的代价得到较高的精度,具有推广的价值。 The traditional CFD simulation of aerodynamic heating analysis of hypersonic vehicle confronts the difficulty of large calculation scale and is not applicable for conceptual design.This paper substitute radial basis function surrogate model for CFD simulation model for the objective of reducing the calculation scale of aerodynamic heating analysis.A new strategy of adding points sequentially is proposed,and is applied to the process of surrogate modeling.And the precision of surrogate model is improved.Compared with traditional radial basis function surrogate model,the new surrogate model proposed in this paper is more accurate and more efficient,and deserves to be promoted.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第8期1804-1808,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.11404405)
关键词 径向基模型 高超声速飞行器 气动热 序贯加点 radial basis function hypersonic vehicle aerodynamic heating add points sequentially
  • 相关文献

参考文献7

  • 1YAO Wen, CHEN Xiaoqian, LUO Wencai, et al. Re- view of Uncertainty-Based Multidisciplinary Design Opti- mization Methods for Aerospace Vehicles [J]. Progress in Aerospace Sciences, 2011, 47(6): 450~479. 被引量:1
  • 2Balesdent M, B6rend N, D6pinc6 P, et al. A Sur- vey of Multidisciplinary Design Optimization Methods in Launch Vehicle Design [J]. Structural and Multidisci- plinary Optimization, 2012, 45(5): 619 -642. 被引量:1
  • 3Martins J R R A, Lambe A B. Multidisciplinary Design Optimization: a Survey of Architectures [J]. AIAA Jour- nal, 2013, 51(9): 2049-2075. 被引量:1
  • 4Deb A, Chou C C, Dutta U, et al. Practical Versus RSM-Based MDO in Vehicle Body Design [Jl. SAE Inter- national Journal of Passenger Cars-Mechanical Systems, 2012, 5(1): 110-119. 被引量:1
  • 5Queipo N V, Haftka R T, Shyy W, et al. Surrogate Based Analysis and Optimization [J]. Progress in Aerospace Sci- ences, 2005, 41(1): 1-28. 被引量:1
  • 6王立鹏,王欣彦,战洪仁,寇丽萍,张先珍.基于径向基函数的无单元法求解力学问题误差分析[J].力学与实践,2013,35(2):67-72. 被引量:3
  • 7Bayona V, Moscoso M, Kindelan M. Optimal Vari- able Shape Parameter for Multiquadric Based RBF-FD Method [J]. Journal of Computational Physics, 2012, 231(6): 2466-2481. 被引量:1

二级参考文献13

  • 1Wang JG, Liu GR. A point interpolation meshless method based on radial basis functions. Int J Numer Methods Engrg, 2002, 54(11): 1623-1648. 被引量:1
  • 2Schaback R. Error estimates and condition numbers for radial basis function interpolation. Adv Comput Math, 1995, 3(3): 251-264. 被引量:1
  • 3Franke R. Scattered data interpolation: Test of some methods. Mathematics of Computation, 1982, 157(38): 181-200. 被引量:1
  • 4Rippa S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in Computational Mathematics, 1999, 11(2-3): 193-210. 被引量:1
  • 5Hardy RL. Theory and applications of the multiquadric-biharmonic method: 20 years of discovery 1968-1988. Computers and Mathematics with Applications, 1990, 19(8-9): 163-208. 被引量:1
  • 6Carlson RE, Foley TA. The parameter R2 in multiquadric interpolation. Computers and Mathematics with Applications, 1991, 21(9): 29-42. 被引量:1
  • 7Kansa EJ. A scattered data approximation scheme with application to computational fluid-dynamics I and II. Computers and Mathematics with Applications, 1990, 19(8-9): 127-161. 被引量:1
  • 8Sturgill D. Variable shape parameter strategies in radial basis function methods. [PhD Thesis]. Huntington, West Virginia: Marshall University, 2009. 被引量:1
  • 9Wang JG, Liu GR. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Engrg, 2002, 191(23-24): 2611- 2630. 被引量:1
  • 10Huang CS, Lee CF, Cheng AD. Error estimate, optimal shape factor, and high precision computation of multi- quadric collocation method. Engineering Analysis with Boundary Elements, 2007, 31(7): 614-623. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部