期刊文献+

一种融合多传感器信息的移动图像识别方法 被引量:15

A Novel Recognition Approach for Mobile Image Fusing Inertial Sensors
下载PDF
导出
摘要 多传感器数据融合作为一种特殊的数据处理手段在图像识别领域得到了较大的重视和发展,本文提出了一种融合多传感器信息的移动图像识别方法.首先通过在智能手机端提取带传感器信息的图像局部特征,增强局部特征的辨别能力;其次改进了随机聚类森林的建立算法,减少了样本图像训练时间;最后使用快速几何一致性校验对匹配结果进行检查,保证算法的识别精度.实验结果表明,本文提出的方法能够快速有效地识别移动图像,并具有较好的鲁棒性,同时与传统的Vocabulary tree方法进行比较,本文方法的识别速度和精度较优,训练代价较低. Multi-sensor data fusion as a special means of data processing in the field of image recognition has been developed rapidly. This paper presents a novel recognition approach for mobile image to fuse multi-sensor data. Firstly, the local features are extracted by fusing the sensor information to enhance the distinguish ability of them; secondly, the established method of random clustering forest is improved to reduce the training time of sample images; finally, the fast geometric consistency approach is used to check the matching result to ensure the recognition accuracy. Experimental results show that the proposed method can quickly and efficiently recognize the object and has strong robustness. It also has a higher accuraey, faster recognition speed, and less training complexity than the traditional method of vocabulary tree.
出处 《自动化学报》 EI CSCD 北大核心 2015年第8期1394-1404,共11页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2013AA013802) 国家自然科学基金(61370134) 国家重大科技专项(2012ZX03002004) 广东省协同创新与平台环境建设专项(2014B090901024)资助~~
关键词 多传感器数据融合 移动图像识别 随机聚类森林 智能手机 Multi-sensor data fllsion, mobile image recognition, randomized clustering forests, smartphone
  • 相关文献

参考文献5

二级参考文献73

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 2Louren?o M, Barreto J P A, Vasconcelos F. sRD-SIFT: keypoint detection and matching in images with radial distortion. IEEE Transactions on Robotics, 2012, 28(3): 752-760. 被引量:1
  • 3Rublee E, Rabaud V, Konolige K G, Bradski J R. ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2564-2571. 被引量:1
  • 4Tian Q, Zhang S L, Zhou W G, Ji R R, Ni B B, Sebe N. Building descriptive and discriminative visual codebook for large-scale image applications. Multimedia Tools and Applications, 2011, 51(2): 441-477. 被引量:1
  • 5Mikolajczyk K I, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. 被引量:1
  • 6Bay H, Tuytelaars T, van Gool L. SURF: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 404-417. 被引量:1
  • 7Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing, 2009, 3(4): 143-152. 被引量:1
  • 8Huang C R, Chen C R, Chung P C. Contrast context histogram: an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077. 被引量:1
  • 9Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 506-513. 被引量:1
  • 10Winder S, Hua G, Brown, M. Picking the best DAISY. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 20-25. 被引量:1

共引文献87

同被引文献113

引证文献15

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部