期刊文献+

一种基于游程长度和隐写分析特征融合的图像拼接盲检测方法 被引量:3

An image splicing blind detection method combining run-length with steganalysis feature
原文传递
导出
摘要 提出了一种基于游程长度(RLRN)和隐写分析特征融合的图像拼接检测算法。算法中的隐写分析特征是在图像经分块离散余弦变换(DCT)后的系数矩阵中提取,并将其和RLRN特征进行融合。特征提取在色度(chroma)空间进行,用支持向量机(SVM)作为分类器。实验结果显示,融合后的特征在图像测试库CASIA v1.0和CASIA v2.0上识别率分别达到98.57%和97.27%,不仅比特征在融合前的识别率有较大提高,而且和现有的一些算法相比,提出的特征融合算法也具有良好的识别性能。 With the extensive use of editing software,digital image tampering becomes very easy,where the image splicing is the most common.Meanwhile,some images such as evidence in court are very important.It's crucial to provide some reliable methods to identify whether an image has been forged.An image splicing detection method combining run-length with steganography analysis feature is proposed.First,the steganalysis feature is extracted by applying a submodel named"s2_spam12hv"(apart of the rich model proposed by Fridrich et al)into the coefficients matrix generated by block discrete cosine transform(BDCT)of an image.Then,this feature is combined with the run-length feature.The runlength feature consists of four gray level run-length run-number vectors extracted in four different directions from a de-correlated image.The feature extractions of the two parts are both carried out in chroma space which consists of cb and cr channels.Support vector machine is chosen as the classifier.Experimental results show that the merged feature can achieve accuracies of 98.57%and 97.27%in datasets CASIA v1.0and CASIA v2.0,respectively.The recognition rate of the feature without merging is greatly improved,and the proposed feature fusion algorithm also shows good recognition performance compared with some existing algorithms.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第7期1387-1393,共7页 Journal of Optoelectronics·Laser
基金 天津市自然科学基金(11JCZDJC16000)资助项目
关键词 图像拼接检测 分块离散余弦变换(BDCT) 游程长度 image splicing detection block discrete cosine transform(BDCT) run-length
  • 相关文献

参考文献22

  • 1盛国瑞,高铁杠,曹雁军,高琳,范礼.基于脊波变换的图像篡改检验算法[J].光电子.激光,2013,24(2):352-358. 被引量:3
  • 2Shi Y Q, Chen C, Chen W. A natural image model ap- proach to splicing detection[A]. Proc. of the 9th work- shop on Multimedia & security. ACM[C]. 2007,51-62. 被引量:1
  • 3DVMM Laboratory of Columbia University. Columbia im- age splicing detection evaluation dataset. [DB/OL]. ht- tp://www, ee. columbia, edu/In/dvmm/downloads/Auth- SplicedDataSet/photographers. htm. 被引量:1
  • 4EI-Alfy E S M,Qureshi M A. Combining spatial and DCT based Markov features for enhanced blind detection of image splicing[J]. Pattern Analysis and Applications, 2014,1-11. 被引量:1
  • 5Alahmadi A A, Hussain M, Aboalsamh H, et al. SplicingImage Forgery Detection Based on DCT and Local Binary Pattern[A].Proc. of Global Conference on Signal and In- formation Processing (GlobalSIP) [C]. 2013,253-256. 被引量:1
  • 6Bao-Jian G, Jun W, Liang-guang X. Steganalysis of data hiding in binary text images based on SVM and run-length statistic[M]. Berlin: Springer Berlin Heidelberg, 2012,69- 76. 被引量:1
  • 7Dong J,Wang W,Tan T,et al. Run-length and edge statis- tics based approach for image splicing detection[M]. Berlin: Springer Berlin Heidelberg, 2009,76-87. 被引量:1
  • 8Liu H,Yang Y,Shang M. Blind detection of image splicing based on run length matrix combined properties [A]. Proc. of Intelligent Control and Automation (WCICA), 2012 lOth World Congress on. IEEE [C]. 2012, 4545- 4550. 被引量:1
  • 9Zhao X,Li d,Li S,et al. Detecting digital image splicing in chroma spaces EM. Berlin: Springer Berlin Heidelberg, 2011,12-22. 被引量:1
  • 10Fridrich J, Kodovsky J. Rich models for steganalysis of digital images[J]. Information Forensics and Security, IEEE Transactions on,2012,7(3) :868-882. 被引量:1

二级参考文献23

  • 1祝瑞玲,王欣.基于有限脊波变换的图像内容认证算法[J].光电子.激光,2009,20(8):1087-1091. 被引量:2
  • 2Popescu A C, Farid H. Exposing digital forgeries by de- tecting traces of re-sampling[J]. IEEE Transactions on Signal Processing,2005,53(2) :758-767. 被引量:1
  • 3Giuseppe Valenzise, Marco Tagliasacchi, Stefano Tubaro. Revealing the traces of JPEG compression anti-forensics[J]. IEEE Transactions on information forensics and secu- rity, 2013,8(2) : 335-349. 被引量:1
  • 4LUO Wei-qi, HUANG Ji-wu, QlU Guo-ping. JPEG error a- nalysis and its applications to digital image forensics[J]. IEEE Trans on Information Forensics and Security, 2010,5 (3) :480-491. 被引量:1
  • 5CAO Gang,ZHAO Yao, NI Rong-rong, et al. Contrast en- hancement-based forensics in digital images [J]. IEEE Transactions on Information Forensics and Security, 2014,9(3) :515-525. 被引量:1
  • 6Ng T T, Chang S F, Sun Q. Blind detection of photomon- tage using higher order statistics[A]. Proc. of the 2004 International Symposium on Circuits and Systems [C]. 2004,5 : 688-691. 被引量:1
  • 7FU D,Shi Y Q,Su W. Detection of image splicing based on hilbert-huang transform and moments of characteristic functions with wavelet decomposition[A]. Proc. of Lec- ture Notes in Computer Science[C]. 2006,177-187. 被引量:1
  • 8Chen W,Shi Y Q,Su W, Image splicing detection using 2- d phase congruency and statistical moments of character- istic function[A]. Proc. of SPIE[C]. 2007,65ese: 27. 被引量:1
  • 9Shi Y Q,Ohen C,Chen A. Natural image model approach to splicing detection [A]. Proc. of MM & Sec" 07, ACM [C]. 2007,5142. 被引量:1
  • 10Sutthiwan P,Shi Y Q,Dong J,et al. New developments in color image tampering detection[A]. Proc. of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) [C]. 2010,3064-3067. 被引量:1

共引文献9

同被引文献10

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部