期刊文献+

模糊神经网络专家系统在动力锂电池组故障诊断中的应用 被引量:19

Fuzzy neural network expert system for fault diagnosis in power lithium battery application
下载PDF
导出
摘要 动力锂电池故障的产生原因具有一定的复杂性和不确定性。为此,提出一种基于模糊神经网络的故障诊断专家系统,该方法结合了模糊数学,神经网络以及专家系统的优点。用模糊数学可以将症状模糊化以表征故障的隶属度、神经网络具有良好的自学习能力、专家系统具有推理能力强,三者的相互结合,即提高了系统的准确性和可操作性,又满足了对故障诊断智能化、自动化的要求。试验结果表明该方法可以准确的判断出系统的故障,不仅将故障检测的精度提高到,预测误差在之间,而且检测时间大大缩短。提高了动力锂电池的自适应能力,自主学习能力,为动力锂电池故障诊断提出了一种科学高效的新方法。 The cause of power lithium battery failure has a certain complexity and uncertainty. To this end, this paper proposes a fault diagnosis expert system based on fuzzy neural network. This method combines the advantages of fuzzy mathematics, neural network and expert system. Using fuzzy mathematics can be blurred to characterize the member- ship degree of the fault symptoms, the neural network has good self-learning ability, the expert system has strong rea- soning ability, All three together, that is not only to improve the accuracy of the system and operability, but also meet the requirement of the intelligent and automatic diagnosis for faults~ The test results show that the method can accurate- ly judge the fault in the system, it not only to increase the accuracy of fault detection to 0.001, control the prediction error at between 1% and 8 %, but also shorten the testing time. This method improves the self-adaptive ability of the power lithium batteries, the independent learning ability, and puts forward a new scientific and efficient method for power lithium battery fault diagnosis.
出处 《电测与仪表》 北大核心 2015年第14期118-123,共6页 Electrical Measurement & Instrumentation
基金 吉林省科技发展计划项目(20140204029sf)
关键词 模糊 神经网络 动力锂电池 故障诊断 专家系统 fuzzy, neural network, power lithium battery, fault diagnosis, expert system
  • 相关文献

参考文献10

  • 1刘晓俊..电池故障智能诊断系统的研究与实现[D].北京邮电大学,2010:
  • 2Jingliang Zhang, Jay Lee. A review on prognostics and health monito- ring of Li-ion battery [ J ]. Journal of Power Sources, 2011, ( 196 ) : 6007 -6014. 被引量:1
  • 3凌国维..基于人工神经网络理论的电动汽车用锂离子动力电池组智能管理系统的研究[D].天津大学,2006:
  • 4刘文杰,齐国光.基于模糊理论的电池故障诊断专家系统[J].吉林大学学报(信息科学版),2005,23(6):670-674. 被引量:14
  • 5刘瑞浩,孙玉坤,陈坤华.电动汽车SOC利用BP神经网络模型预测方法研究[J].电测与仪表,2011,48(3):34-37. 被引量:12
  • 6李国勇,杨庆佛.基于模糊神经网络的车用发动机智能故障诊断系统[J].系统仿真学报,2007,19(5):1034-1037. 被引量:33
  • 7Hongwen He, Rui Xiong. Comparison study on the battery models used for the energy management of batteries in electric vehicles [ J ]. Energy Conversion and Manage/nent, 2012, (64) : 113-121. 被引量:1
  • 8吴建荣..纯电动汽车远程监控系统设计及故障诊断方法研究[D].吉林大学,2011:
  • 9Gregory J. Offer, Vladimir Yufit. Module design and fault diagnosis in electric vehicle batteries[ J ]. Journal power of source, 2012, (202) : 383 -392. 被引量:1
  • 10周润景,张丽娜著..基于MATLAB与fuzzyTECH的模糊与神经网络设计[M].北京:电子工业出版社,2010:380.

二级参考文献20

共引文献56

同被引文献187

引证文献19

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部