摘要
Using tellurium as a solvent, we grew ZnTe ingots of 30 mm in diameter and 70 mm in length by a temperature gradient solution growth method. Hall tests conducted at 300 K indicated that the as-grown ZnTe exhibits p-type conductivity, with a carrier concentration of approximately 10^14cm^-3, a mobility of approximately 300 cm^2·V·s^-1, and a resistivity of approximately 10^2 Ω·cm. A simple and effective method was proposed for chemical surface texturization of ZnTe using an HF:H2O2:H2O etchant. Textures with the sizes of approximately 1μm were produced on {100}, {110}, and { 111}zn surfaces after etching. The etchant is also very promising in crystal characterization because of its strong anisotropic character and Te-phase selectivity.
Using tellurium as a solvent, we grew ZnTe ingots of 30 mm in diameter and 70 mm in length by a temperature gradient solution growth method. Hall tests conducted at 300 K indicated that the as-grown ZnTe exhibits p-type conductivity, with a carrier concentration of approximately 10^14cm^-3, a mobility of approximately 300 cm^2·V·s^-1, and a resistivity of approximately 10^2 Ω·cm. A simple and effective method was proposed for chemical surface texturization of ZnTe using an HF:H2O2:H2O etchant. Textures with the sizes of approximately 1μm were produced on {100}, {110}, and { 111}zn surfaces after etching. The etchant is also very promising in crystal characterization because of its strong anisotropic character and Te-phase selectivity.
基金
financially supported by the National Basic Research Program of China (No. 2011CB610406)
the National Natural Science Foundation of China (No. 51372205)
supported by the 111 Project of China (No. B08040)
the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20116102120014)
the Northwestern Polytechnical University Foundation for Fundamental Research
the Research Fund of the State Key Laboratory of Solidification Processing (NWPU)