期刊文献+

On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: Ⅲ. Galactic far-infrared radiation

On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: Ⅲ. Galactic far-infrared radiation
下载PDF
导出
摘要 Using the three-component spectral model describing the FIRAS average continuum spectra, the exact analytical expressions for thermodynamic and radiative functions of Galactic far-infrared radiation are obtained. The COBE FIRAS instrument data in the 0.15-2.88 THz frequency interval at the mean temperatures of T1= 17.72 K, T2= 14 K and T3= 6.73 K are used for calculating the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, total emissivity, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume and pressure for the warm,intermediate-temperature and very cold components of the Galactic continuum spectra. The generalized Stefan-Boltzmann law for warm, intermediate-temperature and very cold components is constructed. The temperature dependence of each component is determined by the formula IS-B(T) = σ′ T6. This result is important when we construct the cosmological models of radiative transfer that can be applied inside the Galaxy. Within the framework of the three-component spectral model, the total number of photons in our Galaxy and the total radiation power(total luminosity) emitted from a surface of the Galaxy are calculated. Their values are N6Gtotal= 1.3780 × 108 and I3Gtotal(T) = 1.0482 × 106 W. Other radiative and thermodynamic properties of the Galactic far-infrared radiation(photon gas) of the Galaxy are calculated. The expressions for astrophysical parameters, such as the entropy density/Boltzmann constant and number density of the Galactic far-infrared photons are obtained. We assume that the obtained analytical expressions for thermodynamic and radiative functions may be useful for describing the continuum spectra of the far-infrared radiation for other galaxies. Using the three-component spectral model describing the FIRAS average continuum spectra, the exact analytical expressions for thermodynamic and radiative functions of Galactic far-infrared radiation are obtained. The COBE FIRAS instrument data in the 0.15-2.88 THz frequency interval at the mean temperatures of T1= 17.72 K, T2= 14 K and T3= 6.73 K are used for calculating the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, total emissivity, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume and pressure for the warm,intermediate-temperature and very cold components of the Galactic continuum spectra. The generalized Stefan-Boltzmann law for warm, intermediate-temperature and very cold components is constructed. The temperature dependence of each component is determined by the formula IS-B(T) = σ′ T6. This result is important when we construct the cosmological models of radiative transfer that can be applied inside the Galaxy. Within the framework of the three-component spectral model, the total number of photons in our Galaxy and the total radiation power(total luminosity) emitted from a surface of the Galaxy are calculated. Their values are N6Gtotal= 1.3780 × 108 and I3Gtotal(T) = 1.0482 × 106 W. Other radiative and thermodynamic properties of the Galactic far-infrared radiation(photon gas) of the Galaxy are calculated. The expressions for astrophysical parameters, such as the entropy density/Boltzmann constant and number density of the Galactic far-infrared photons are obtained. We assume that the obtained analytical expressions for thermodynamic and radiative functions may be useful for describing the continuum spectra of the far-infrared radiation for other galaxies.
机构地区 ONCFEC Inc.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第7期939-952,共14页 天文和天体物理学研究(英文版)
关键词 Galaxy: general -- galaxies: general Galaxy: general -- galaxies: general
  • 相关文献

参考文献17

  • 1Abramowitz, M., & Stegun, I. A. 1972, Handbook of Mathematical Functions (New York: Dover). 被引量:1
  • 2Fisenko, A. I., & Lemberg, V. 2014a, Ap&SS, 352, 221. 被引量:1
  • 3Fisenko, A. I., & Lemberg, V. 2014b, Ap&SS, 352, 231. 被引量:1
  • 4Fixsen, D. J. 2009, ApJ, 707,916. 被引量:1
  • 5Fixsen, D. J., Cheng, E. S., Gales, J. M., et al. 1996, ApJ, 473,576. 被引量:1
  • 6Fixsen, D. J., Dwek, E., Mather, J. C., Bennett, C. L., & Shafer, R. A. 1998, ApJ, 508, 123. 被引量:1
  • 7Fixsen, D. J., Cheng, E. S., Cottingham, D. A., et al. 1994, ApJ, 420, 445. 被引量:1
  • 8Landau, L. D., & Lifshitz, E. M. 1980, Statistical Physics, Course of Theoretical Physics (Oxford: Pergamon Press). 被引量:1
  • 9Martinez, V. J., & Saar, E. 2010, Statistics of the Galaxy Distribution (CRC Press). 被引量:1
  • 10Mather, J. C., Cheng, E. S., Eplee, Jr., R. E., et al. 1990, ApJ, 354, L37. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部