期刊文献+

基于GF空间多项式核函数的分类研究 被引量:1

The Classification Research of Polynomial Kernel Function Based on GF Space
下载PDF
导出
摘要 在基于核方法的分类问题中,核函数及其参数选择皆对分类结果具有重要影响,通常基于经验选择核函数或基于多核优化方法确定核函数的权系数。针对GF空间的多项式核函数,在范数限定条件下利用多核学习方法优化多项式权系数,实现多项式核函数的优化。实验结果表明,算法优化得到的多项式核函数其分类性能优于常用的单核函数,与多核方法相当,并在分类中取得良好的效果。 In classification problem based on the kernel method,kernel function and its parameters have a significant effect on the classification performance. Generally,we select kernel function by experience and weighted coefficient of multiple kernel function which is determined by the multiple kernel optimizing method.Under the norm restricted condition,we utilize multiple kernel learning method to optimize the weighted coefficient of polynomial kernel function based on GF space,and the optimization of polynomial kernel function can be achieved. The experiments results show that the algorithm's classification performance based on polynomial kernel function in this paper is better than popular used single kernel function,and meet the multiple kernel method's match; and it perform well in the classification research.
出处 《杭州电子科技大学学报(自然科学版)》 2015年第3期77-80,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 核方法 GF空间 多核学习 kernel method GF space multiple kernel learning
  • 相关文献

参考文献7

  • 1Cortes C, Vapnik V. Support-Vector Networks [ J ]. Machines Learning, 1995,20 (3) :273 - 297. 被引量:1
  • 2Scholkopf B, Smola A, Miiller K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural computation, 1998,10(5) :1299 - 1319. 被引量:1
  • 3Yanning CAI,Hongqiao WANG,Xuemei YE,Qinggang FAN.A multiple-kernel LSSVR method for separable nonlinear system identifcation[J].控制理论与应用(英文版),2013,11(4):651-655. 被引量:5
  • 4汪洪桥,孙富春,蔡艳宁,陈宁,丁林阁.多核学习方法[J].自动化学报,2010,36(8):1037-1050. 被引量:156
  • 5Bucak S, Jin R, Jain A. Multiple kernel learning for visual object recognition: A review [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on ,2013,36 ( 7 ) : 1354 - 1369. 被引量:1
  • 6De Figueiredo R J P, Dwyer III T A W. A best approximation framework and implementation for simulation of large-scale nonlinear systems [ J ]. Circuits and Systems, IEEE Transactions on, 1980,27 ( 11 ) : 1005 -1014. 被引量:1
  • 7Xu J W, Pokharel P P, Jeong K H, et al. An explicit construction of a reproducing Gaussian kernel Hilbert space [ C ]// Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. Toulouse : IEEE ,2006,5 : V573 - V576. 被引量:1

二级参考文献17

  • 1Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 2J. L. Rojo-Alvarez, M. Martfnez-Ram6n, M. D. Prado-Cumplido. Support vector method for robust ARMA system identification. IEEE Transactions on Signal Processing, 2004, 52( 1 ): 155 - 164. 被引量:1
  • 3M. Martinez-Ram6n, J. L. Rojo-,/dvarez, G. Camps-Vails. Support vector machines for nonlinear kernel ARMA system identification. IEEE Transactions on Neural Networks, 2006, 17(6): 1617 - 1622. 被引量:1
  • 4C. Y. Yeh, C. W. Huang, S. J. Lee. A multiple-kernel support vector regression approach for stock market price forecasting. Expert Systems with Applications, 2011,38(3): 2177 - 2186. 被引量:1
  • 5M. GOnen, E. Alpaydn. Regularizing multiple kernel learning using response surface methodology. Pattern Recognition. 2011,44(1 ): 159 - 171. 被引量:1
  • 6G. Camps-Vails, M. Martfnez-Ram6n, J. L. Rojo-Alvarez. Nonlinear system identification with composite relevance vector machines. IEEE Signal Processing Letters, 2007, 14(4): 1 - 5. 被引量:1
  • 7C. Richard, J. C. M. Bermudez, P. Honeine. Online prediction of time series data with kernels. IEEE Transactions on Signal Processing, 2009, 57(3): 1058 - 1067. 被引量:1
  • 8I 1. Nicholas, S. Ravi. Time series prediction using support vector machines: a survey. IEEE Computational Intelligence Magazine, 2009, 4(2): 24 - 38. 被引量:1
  • 9C. Y. Yeh, W. P. Su, S. J. Lee. Employing multiple-kernel support vector machines for counterfeit banknote recognition. Applied Soft Computing, 2011, 11(1): 1439 - 1447. 被引量:1
  • 10T. Damoulas, M. A. Girolami. Pattern recognition with a Bayesian kernel combination machine. Pattern Recognition Letters, 2009, 30 17:46 - 54. 被引量:1

共引文献157

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部