期刊文献+

风电–氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模 被引量:43

Modeling on Hydrogen Producing Progress in EMR Based Wind Power-hydrogen Energy Storage and Coal Chemical Pluripotent Coupling System
下载PDF
导出
摘要 为了提高风电消纳能力、减少煤化工对环境的污染,提出以氢储能技术为媒介将风电和煤化工进行整合。构建了风电–氢储能与煤化工多能耦合系统基本架构,将电网不能消纳的富裕风电通过电解水制氢储能;储存的氢气除供给煤化工使用以简化其生产流程外,还可在需要时用于发电以平抑风电对电力系统的安全稳定运行的掣肘;针对多能耦合系统中的氢储能过程,利用宏观能量描述法(EMR)建立了氢储能系统模型,揭示了制氢系统中的能量传递或转换机制;并基于反转规则建立了氢储能系统的控制结构,初步构建了调整系统功率流和氢气流的控制策略。最后,基于MATLAB/Simulink搭建了多能耦合系统中氢储能系统的仿真模型并进行了仿真实验。结果表明,氢气储能系统可以在0~100%额定功率范围内自适应风电功率的随机、间歇和波动等特性,验证了所提多能系统的基本思路和所建立的氢储能系统仿真模型的正确性。 In order to improve the wind power consuming ability and reduce pollution of coal chemical to environment, we put forward the process integration of wind power and coal chemical processing by taking hydrogen energy storage technology as an intermediary. Based on the basic framework of wind power-hydrogen energy storage and coal chemical multi-functional coupling system, hydrogen produced by electrolyzing water is used in the unconsumed wind power of power grid to store the hydrogen. The stored hydrogen is not only provided to coal chemical industry to simplify the pro- duction process, but also used to generate electricity, when needed, to decrease the constraints of wind power to the safe and stable operation of power system. Aiming at the hydrogen producing progress in pluripotent coupling system, we es- tablished a mathematical model of hydrogen producing system based on energetic macroscopic representation(EMR), and revealed the energy transmit or shifting mechanism of hydrogen producing system. Then we established the controlling structure of hydrogen producing system based on inversion rule, and proposed the controlling strategy of adjusting power flow and hydrogen flow. Finally, we built the simulation model of hydrogen producing system in pluripotent coupling system on the basis of MATLAB/Simulink and simulated the producing progress of hydrogen. The results show that the hydrogen storage can adapt to the random, intermittent, and wave characteristics of wind power in the rated power range of 0-100%, verifying the basic train of thought of the multi-functional coupling system and the correctness of the hydrogen storage system simulation model.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第7期2156-2164,共9页 High Voltage Engineering
基金 国家自然科学基金(51367018) 国家自然科学基金创新研究群体科学基金(51321005) 新疆杰出青年自然科学基金(2014711005)~~
关键词 宏观能量描述法 风电 氢储能 煤化工 多能耦合 MATLAB/Simulink energetic macroscopic representation wind power hydrogen energy storage coal chemical pluripotentcouple MATLAB/Simulink
  • 相关文献

参考文献14

二级参考文献60

  • 1倪萌,M.K.H.Leung,K.Sumathy.电解水制氢技术进展[J].能源环境保护,2004,18(5):5-9. 被引量:59
  • 2肖云汉,张士杰.煤炭多联产技术和氢能技术[J].华北电力大学学报(自然科学版),2004,31(6):5-9. 被引量:14
  • 3鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:931
  • 4高洪山.高压电解水[J].重组大能源,2009. 被引量:1
  • 5郑尔历.风电制氢与风电上网的风能利用效率比较[J].关于酒泉风电场电力制氢可行性的探讨,2010(8). 被引量:1
  • 6覃泽文.科学家发明无碳“人造汽油”[J].中国能源报,2011. 被引量:1
  • 7张碧航,周晓宏.水电解制氢设备用于非大规模并网风电项目的实验及产业化前景[C]//中国动力工程学会工业气体专业委员会2009年技术论文. 被引量:1
  • 8Zhu Y W, Wang T, Yah Z M, et al. Multipole field electromagnetic launcher[J]. IEEE Transactions on Magnetics, 2010, 46(7): 2622-2627. 被引量:1
  • 9Fair H D. Progress in electromagnetic launch Science and technolo- gy[J]. IEEE Transactions on Magnetics, 2007, 43(1): 93-98. 被引量:1
  • 10Zhu Y W, Wang Y, Chen W R, et al. Analysis and evaluation of three-stage twisty octapole field electromagnetic launcher[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1399-1406. 被引量:1

共引文献36

同被引文献479

引证文献43

二级引证文献462

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部