期刊文献+

静止轨道遥感卫星海面运动舰船快速检测方法 被引量:15

Ocean Moving Ship Detection Method for Remote Sensing Satellite in Geostationary Orbit
下载PDF
导出
摘要 面向静止轨道光学遥感卫星,该文提出一种海上运动舰船目标快速检测方法。该方法首先利用多结构多尺度形态学滤波对海洋背景遥感图像进行背景抑制;然后采用自适应阈值分割和自组织聚类获得候选目标;再根据目标运动特征,利用静止轨道卫星凝视序列图像对候选目标进行多目标移动式邻域判决,剔除虚假目标;最后关联舰船目标以及融合卫星平台数据,可快速计算舰船状态等深层次动态信息。实验结果与分析表明,所提方法能有效检测海洋背景遥感图像中的多个运动舰船目标,准确获取各个舰船位置、航速、航向、运动轨迹等信息,具有算法简单,目标检测率高、虚警率低,稳定性好等优点。该方法为我国静止轨道光学遥感卫星在轨数据处理与应用提供了技术支撑。 A moving ship detection method is presented for ocean moving objects detection of remote sensing satellite in geostationary orbit. First, the multi-structural and multiscale element morphological filter is used to suppress background information of oceanic remote sensing images. Then, image segmentation is done by adopting the adaptive threshold algorithm. Accordingly, the connected domains of pre-detection targets are obtained by utilizing self-organized clustering. Finally, real targets from many candidate targets can be obtained by multi-object variable region decision based on moving targets feature. The experiment results and analysis show that the proposed method can detect moving warship targets and the trajectories of moving targets efficiently, and has high detection probability and robustness. This method provides technical support for on-board image processing of remote sensing satellite in geostationary orbit.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第8期1862-1867,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61372175) 高分辨率对地观测系统青年创新基金(GFZX04060103)资助课题
关键词 舰船检测 静止轨道遥感卫星 多运动舰船目标 运动轨迹 Ship detection Remote sensing satellite in geostationary orbit Multiple moving ship targets Moving trajectory
  • 相关文献

参考文献16

  • 1Hou Biao, Chen Xing-zhong, and Jiao Li-cheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4): 811-815. 被引量:1
  • 2Pasquale I, Martin C, Raffaella G, et al.. Ship-detection in SAR imagery using low pulse repetition frequency radar[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, 2014: 1-4. 被引量:1
  • 3Wei Ju-jie, Li Ping-xiang, and Yang jie. A new automatic ship detection method using L-band polarimetric SAR imagery[J]. IEEE Journal o/Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1383-1393. 被引量:1
  • 4李亚超,周瑞雨,全英汇,邢孟道.采用自适应背景窗的舰船目标检测算法[J].西安交通大学学报,2013,47(6):25-30. 被引量:11
  • 5焦智灏,杨健,叶春茂,宋建社.基于杂波区分度参数的舰船检测方法[J].系统工程与电子技术,2014,36(8):1488-1493. 被引量:1
  • 6Jubelin G and Khenchaf A. Multiscale algorithm for ship detection in mid, high and very high resolution optical imagery[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, 2014: 2289-2292. 被引量:1
  • 7Song Zhi-na, Sui Hai-gang, and Wang Yu-jie. Automatic ship detection for optical satellite images based on visual attention model and LBP[C]. IEEE Workshop on Electronics, Computer and Applications, Ottawa, 2014: 722-725. 被引量:1
  • 8Liu Ge, Zhang Ya-sen, Zheng Xin-wei, et al.. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 617-621. 被引量:1
  • 9丁正虎,余映,王斌,张立明.选择性视觉注意机制下的多光谱图像舰船检测[J].计算机辅助设计与图形学学报,2011,23(3):419-425. 被引量:18
  • 10王卫卫,席灯炎,杨塨鹏,周丽娟.利用结构纹理分解的海洋舰船目标检测[J].西安电子科技大学学报,2012,39(4):131-137. 被引量:21

二级参考文献93

  • 1李吉成,沈振康,李秋华.强背景杂波条件下运动的弱小目标检测方法[J].红外与激光工程,2005,34(2):208-211. 被引量:12
  • 2肖利平,曹炬,高晓颖.复杂海地背景下的舰船目标检测[J].光电工程,2007,34(6):6-10. 被引量:33
  • 3储昭亮,王庆华,陈海林,徐守时.基于极小误差阈值分割的舰船自动检测方法[J].计算机工程,2007,33(11):239-241. 被引量:25
  • 4GonzalezRC,WoodRE.数字图像处理(Matlab版)[M].北京:电子工业出版社,2007. 被引量:4
  • 5Reed I S,Yu X L.Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1990,38(10):1760-1770. 被引量:1
  • 6Yu X L,Reed I S,Stocker A D.Comparative performance analysis of adaptive multispectral detectors[J].IEEE Transactions on Signal Processing,1993,41(8):2639-2656. 被引量:1
  • 7Yu X L,Hoff L E,Reed I S,et al.Automatic target detection and recognition in multiband imagery:a unified ML detection and estimation approach[J].IEEE Transactions on Image Processing,1997,6(1):143-156. 被引量:1
  • 8Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259. 被引量:1
  • 9Treisman A M,Gelade G.A feature-integration theory of attention[J].Cognitive Psychology,1980,12(1):97-136. 被引量:1
  • 10Niebur E,Koch C.The attentive brain[M].Cambridge:The MIT Press,1998:163-186. 被引量:1

共引文献81

同被引文献167

引证文献15

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部