期刊文献+

基于状态维修的动车组关键部件寿命预测 被引量:2

Key components life prediction of EMU based on condition-based maintenance
下载PDF
导出
摘要 随着社会科学技术的发展,动车组维修技术得到了提高,动车组运行时间越长相应的故障率也越高。通过状态维修策略中采集实时数据,与正常值进行对比,就可以发现非正常值,然后预测关键部件的寿命,使动车组达到最优状态。利用状态维修策略建立关键部件的寿命预测模型,通过MATLAB计算数据。结果表明,所研究的模型方法可用于故障性动车组将要运行时间的确定。 Along with the development of science and technology, the technologies of EMU equipment maintenance were improved. With the accumulation of running time, the probability of equipment failure was also increased. Condition-based maintenance strategy was to collect the equipment running real-time data, compare it with the normal value, ifnd the potential failures and predict the life. Based on the strategy, it was established a new model for key components life prediction. The data was calculated with MATLAB. The results showed that the model could be applied to the conifrmation of the running time of EMU.
作者 张春 李鹏程
出处 《铁路计算机应用》 2015年第7期1-4,共4页 Railway Computer Application
基金 国家"八六三"计划项目(2012AA040812)
关键词 状态维修 动车组 寿命预测 故障率 condition-based maintenance Electronic Multiple Units(EMU) life prediction failure rate
  • 相关文献

参考文献11

  • 1Grall A,Berengure C,Dieulle L.A Condition based Maintenance Policy for Stochastically Deteriorating System[J].Reliability Engineering and System Safety,2002,76:167-180. 被引量:1
  • 2VLOK P J,C0ETZEE J L,BANJEVlC D,et a1.0ptimal component replacement decisions using vibration monitoring a n d t h e p r o p o r t i o n a l-h a z a r d s m o d e l[J].J o u r n a l o f t h e0perational Research Society,2002,53(2):193-202. 被引量:1
  • 3LIN D,WISEMAN M,BANJEVIC D,et a1.An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure[J].1v Iechanical System and Signal Processing,2004(18):993-1007. 被引量:1
  • 4Christer A H.Innovatory Decision Making,the Role and Effectiveness of Theories of Decision in Practice[R].London:Hodder&Stoughton,1973:369-377. 被引量:1
  • 5Jia Y X,Wallg W.A Development of a Prototype softwal on CBM modeling[C].Proceedings of ICRMS 2001,Dalian,China28th-31st August,2001:662-667. 被引量:1
  • 6WANG W.Modelling the probability assessment of system state prognosis using available condition monitoring information[J].IMA Journal of Management Mathematics,2006(17):225-233. 被引量:1
  • 7DONG M,HE D.Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis[J].European Journal of Operational Research,2007,178(3):858-878. 被引量:1
  • 8KWAN C,ZHANG x,XU R et a1.A noval approach to fault diagnostics and prognostics[A].Proceedings of IEEE International Conference on Robotics 8L Automation[C].Taipei,2003. 被引量:1
  • 9卢乃宽.世界高速铁路建设发展趋势[J].中国铁路,2000(3):19-24. 被引量:25
  • 10陈洪奎,袁绍宪,邱洪军.设备状态维修在现代企业设备管理中的应用[J].棉纺织技术,2000,28(7):30-34. 被引量:18

二级参考文献16

  • 1山东省纺织工业厅 山东省设备管理协会.山东省纺织工业设备制度[M].,1992.13. 被引量:1
  • 2袁宝华.中国企业管理百科全书[M].北京:企业管理出版社,1984.454. 被引量:2
  • 3李长遂.纺织企业管理基础[M].北京:中国纺织出版社,1995.262. 被引量:1
  • 4[1]Germany Pushes Ahead With Network Expansion.IRJ,1998(10) 被引量:1
  • 5[2]Proceedings of 3rd World Congress on High Speed Rail,1998 被引量:1
  • 6NOCEDAL J, WRIGHT S J. Numerical optimization[M]. Berlin: Springer, 1999. 被引量:1
  • 7NELSON W. Applied life data analysis [M]. New York: Wiley, 1982. 被引量:1
  • 8MURTHY D N P, XIE M, JIANG R Y. Weibull models [M]. New York: Wiley, 2003. 被引量:1
  • 9BUCAR T, NAGODE M, FAJDIGA M. Reliability approximation using finite Weibull mixture distributions[J]. Reliability Engineering & System Safety, 2004, 87(3): 241-251. 被引量:1
  • 10MURTHY D N P, BULMER M, ECCLESTON J A. Weibull model selection for reliability modeling[J]. Reliability Engineering & System Safety, 2004, 86(3): 257-267. 被引量:1

共引文献59

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部