期刊文献+

异质信息网络分析及其语义探索 被引量:1

Analysis and Semantic Mining in Heterogeneous Information Network
下载PDF
导出
摘要 由多种类型的实体和关系构成的异质信息网络逐渐成为社会网络分析的研究热点。作为异质信息网络的一个独特属性,元路径包含了丰富的语义信息。实际生活中的许多网络都包含带权值的链接,这使得不考虑链接上权值的传统元路径不能精确地捕捉网络中的语义信息。基于此,描述了异质信息网络的相关概念,并对异质信息网络的应用进行了简要介绍。通过将传统元路径扩展为带权元路径,更精确地描述了带权值的异质信息网络中微妙的语义信息。通过在两个真实数据集上进行实验,说明了带权元路径在推荐、相关性搜索中的应用效果。 Heterogeneous information network (HIN), which is composed of different types of objects and links, has gradually become a hot topic in social network analysis. As a unique characteristic of HIN, meta path contains rich semantic information. Heterogeneous information network with values on links are ubiquitous in real world. Therefore, the traditional meta path, which doesn't consider weight on links, can not exactly capture semantics in many cases. Related concepts of HIN were introduced and a brief introduction of applications of HIN was given. Then subtle semantic information in HIN was explored by extending the traditional meta path to weighted meta path. Experiments on two real data sets demonstrate the applications of the weighted meta path in recommendation, relevance search.
出处 《电信科学》 北大核心 2015年第7期43-51,共9页 Telecommunications Science
基金 国家重点基础研究发展计划("973"计划)基金资助项目(No.2013CB329606) 国家高技术研究发展计划("863"计划)基金资助项目(No.2015AA050203 No.2015AA050204) 国家自然科学基金资助项目(No.71231002 No.61375058)~~
关键词 异质信息网络 元路径 相关性搜索 推荐 heterogeneous information network, meta path, relevance search, recommendation
  • 相关文献

参考文献14

  • 1Sun Y, Norick B, Han J, et O1. Integrating meta-path selection with user-guided object clustering in heterogeneous information networks. Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012: 723.724. 被引量:1
  • 2Ji M, Han J, Danilevsky M. Ranking-based classification ofh ete rogeneous information networks. Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, San Diego, Califomia, USA, 2011:1298.1306. 被引量:1
  • 3Yu X, Ren X, Sun Y, et ol. Personalized entity recommendation: a heterogeneous information network approach. Proceedings of the 7th ACM WSDM Conference, New York, USA, 2014:283-292. 被引量:1
  • 4Sun Y, Han J, Yah X, et al. Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the 37th Intemational Conference on Very Large Data Bases, Seattle, WA, USA, 2011:992-1003. 被引量:1
  • 5Lao N, Cohen W W. Fast query execution for retrieval models based on path-constrained random walks. Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, USA, 2010:881-888. 被引量:1
  • 6Shi C, Kong X, Huang Y, et o1. HeteSim: a general framework for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge & Data Engineering, 2014(10): 2479.2492. 被引量:1
  • 7Sun Y, Han J. Mining heterogeneous information networks: a structural analysis approach. ACM SIGKDD Explorations Newsletter, 2013, 14(2): 20-28. 被引量:1
  • 8Sun Y, Aggarwal C, Han J. Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. Proceedings of the 38th International Conference on Very Large Data Bases, Istanbul, Turkey, 2012:394-405. 被引量:1
  • 9Sun Y, Hart J, Zhao P, et ol. RankClus: integrating clustering with ranking for heterogeneous information network analysis. Proceedings of EDBT, Saint-Petersburg, Russia, 2009: 565-576. 被引量:1
  • 10Angelova R, Kasneci G, Weikum G. Graffiti: graph-based classification in heterogeneous networks. Proceedings of International Conference of World Wide Web, Lyon, France, 2012:139-170. 被引量:1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部