期刊文献+

高盐度废水微生物燃料电池电压与底物有机物浓度相关性研究 被引量:3

Relationship of chemical oxygen demand and voltage of microbial fuel cells with the high salinity wastewater
下载PDF
导出
摘要 高盐度废水微生物燃料电池(MFCs)采用连续流培养模式,以不同化学需氧量(COD)的高盐度废水为燃料,观察MFCs电压的变化和MFCs电压对不同高盐度废水的响应时间,并提出构建生物传感器的构想。结果表明,当COD浓度〉290 mg/L时,输出电压值维持在162-168 m V之间;当COD浓度〈290 mg/L时,输出电压值随COD浓度变化,两者之间满足直线方程,y=0.53x,其中y为电压,x为COD浓度,相关系数为0.986;MFCs对COD浓度〈290 mg/L的高盐度废水感应灵敏,更换不同浓度的高盐度废水,电压的响应时间为0.8-4 h。为高盐度低COD浓度废水提供了一种新的检测方法,方便、快速。 The high salinity wastewater was used as the substrate of microbial fuel cells( MFCs) by the continuous-flow mode. Different concentrations of chemical oxygen demand( COD) of the high salinity wastewater were adopted to observe the change of output voltage value of MFCs and response time. Then,an idea of biosensor was put forward. Results showed that when the concentration of COD was more than290 mg / L,the value of output voltage kept steady state,from 162 - 168 m V. When COD concentration was less than 290 mg / L,a linear relation between voltage and COD fit the equation of a straight line well,y = 0. 53 x,where y is the voltage,x is the COD concentration,R2 is 0. 986. When COD concentration was less than 290 mg / L,MFCs were sensitive and the value of output voltage kept steady state after 0. 8 -4 h. The biosensor provides a new test method of COD which is more convenient and faster.
出处 《应用化工》 CAS CSCD 北大核心 2015年第7期1185-1189,共5页 Applied Chemical Industry
基金 国家自然科学基金(50178070)
关键词 微生物燃料电池 高盐度废水 连续流 响应时间 空气阴极 生物传感器 MFCs high salinity wastewater continuous-flow response time air cathode biosensor
  • 相关文献

参考文献26

  • 1温淑瑶,马占青,高晓飞,王晓岚.重铬酸钾法测定COD存在问题及改进研究进展[J].实验技术与管理,2010,27(1):43-46. 被引量:20
  • 2郭英.快速消解分光光度法测定化学需氧量[J].环境科学导刊,2011,30(2):94-96. 被引量:20
  • 3彭跃,胥学鹏,张丽华,关屏.氯气校正法测定高氯废水中化学需氧量方法的改进[J].中国环境监测,2005,21(2):55-56. 被引量:18
  • 4Min B,Cheng S,Logan B E.Electricity generation using membrane and salt bridge microbial fuel cells[J].Water Research,2005,39:1675-1686. 被引量:1
  • 5Cheng S A,Liu H,Logan B E.Increased performance of single-chamber microbial fuel cells using an improved cathode structure[J].Electrochemistry Communications,2006,8:489-494. 被引量:1
  • 6Logan B E,Regan J M.Electricity-producing bacterial communities in microbial fuel cells[J].TRENDS in Microbiology,2006,14(12):512-518. 被引量:1
  • 7Mohanakrishna G,Venkata Mohan S,Sarma P N.Bioelectrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation[J].Hazardous Materials,2010,177:487-494. 被引量:1
  • 8Chang I P,Jang J K,Gil G C,et al.Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor[J].Biosensors and Bioelectronics,2004,19:607-613. 被引量:1
  • 9Kumlanghan A,Liu J,Thavarungkul P,et al.Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter[J].Biosensors and Bioelectronics,2007,22:2939-2944. 被引量:1
  • 10Peixoto L,Min B,Martins G,et al.In situ microbial fuel cell-based biosensor for organic carbon[J].Bioelectrochemistry,2011,81:99-103. 被引量:1

二级参考文献90

共引文献71

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部