期刊文献+

基于改进Kriging代理模型的自适应序列优化算法在离心压缩机蜗壳设计中的应用 被引量:5

Application of Adaptive Sequential Optimization Algorithm Based on Kriging Surrogate Model in Design of Centrifugal Compressor Volute
下载PDF
导出
摘要 提出了一种基于改进Kriging代理模型的自适应序列优化算法,并利用Matlab软件开发相应的优化平台.采用该优化平台,针对某特定流量工况,以质量流量平均总压损失系数为目标变量对离心压缩机蜗壳系统模型进行气动优化设计,并对优化前后蜗壳模型进行对比计算,来验证优化结果在实际蜗壳系统中的适用性.结果表明:优化后蜗壳的总压损失系数小、静压恢复系数大,性能得到改善. An adaptive sequential optimization algorithm was presented based on improved Kriging surro- gate model, while a corresponding optimization platform was developed using Matlab software, with which an aerodynamic optimization design was carried out for a centrifugal compressor volute by taking the total pressure loss coefficient as the target variable. A comparative calculation was made for the compressor vo- lute before and after optimization, so as to verify the applicability of the platform in design of actual com- pressor volutes. Results show that after optimization, the total pressure loss coefficient is decreased and the static recovery coefficient is increased, resulting in improved performance of the compressor volute.
出处 《动力工程学报》 CAS CSCD 北大核心 2015年第7期562-567,共6页 Journal of Chinese Society of Power Engineering
基金 国家自然科学基金资助项目(11202132)
关键词 Kriging代理模型 序列优化 离心压缩机 蜗壳 Kriging surrogate model sequential optimization centrifugal compressor volute
  • 相关文献

参考文献12

二级参考文献75

  • 1周星德,彭宣茂.基于遗传算法的建筑结构最优阻尼研究[J].计算力学学报,2005,22(6):780-784. 被引量:6
  • 2Oyama A, Liou M S, Obayashi S. Transonic axial flow blade optimization: Evolutionary algorithms/ three dimensional Navier-Stokes solver [J]. Journal of Propulsion and Power, 2004,20(4) :612-619. 被引量:1
  • 3Abdus S, Kim K Y, Tushar G, et al. Multiple surrogate modeling for axial compressor blade shape optimization [J]. Journal of Propulsion and Power, 2008,24(2) :302-310. 被引量:1
  • 4Mengistu T, Ghaly W. Aerodynamic optimization of turbomachinery blades using evolutionary methods and ANN-based surrogate models [J]. Optimization and Engineering, 2008,9(3) : 239-255. 被引量:1
  • 5Jones D R. A taxonomy of global optimization methods based on response surfaces [J]. Journal of Global Optimization, 2001,21:345-383. 被引量:1
  • 6Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black box functions [J]. Journal of Global Optimization, 1998, 13: 455-492. 被引量:1
  • 7Sasena M J. Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations [D]. Ann Arbor: University of Michigan, 2002. 被引量:1
  • 8Hoyle N, Bressloff N W, Keane A J. Design optimization of a two-dimensional subsonic engine air intake E[J]. AIAA Journal, 2006(44) :2672-2681. 被引量:1
  • 9Lophaven S N, Nielsen H B, Sondergaard J. DACE---A matlab Kriging toolbox, version 2. 0 [EB/OL]. ( 2008-08-01 ) [2008-10-22]. http:// www2. imm. dtu. dk/-hbn/dace/dace. pdf. 被引量:1
  • 10Wang G G. Adaptive response surface method using inherited latin hypercube design points [J]. Journal of Mechanical Design, 2003,125 (2) : 210-220. 被引量:1

共引文献67

同被引文献50

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部