期刊文献+

涡轮导向器缘板安装缝隙泄漏特性数值模拟 被引量:1

Numerical simulation of leakage characteristic of assembled endwall slot of turbine guide vane
原文传递
导出
摘要 针对某航空发动机涡轮导向器,采用数值模拟的方法研究了缘板安装缝隙泄漏流对叶栅通道流场结构及叶栅性能参数的影响,对比分析了不同泄漏流压力、缝隙宽度及缝隙相对位置条件下的泄漏量,及其对叶栅性能参数的影响规律.研究发现:在压差作用下冷气通过缘板安装缝隙进入燃气主流通道并在中段的位置形成螺旋涡系,对端壁二次流产生明显影响,其作用效果沿叶高方向逐渐降低,最大影响区域为44.44%叶高.计算结果表明:随着泄漏流压力的提高、缝隙宽度的增加、缝隙与发动机主轴方向夹角的变大,叶栅的能量损失系数和泄漏量都呈现出了单调增加的趋势.在研究的参数范围内,涡轮缘板安装缝隙导致的泄漏流可使叶栅的能量损失系数增加14%~62%. Numerical simulations were applied to study the leakage flow of assembled endwall slot of turbine guide vane of an aero-engine.The effects of leakage flow on the structure of flow field of cascade passage and performance parameters of the cascade were also discussed.The leakage flow pressures,the slot width and position of the slot were changed to investigate the rules of leakage flow rate and energy loss coefficient varying with these parameters and discover the effect rules.It is found that the leakage can appear due to different pressures between cooling air and gas,spiral vortex system is formed in the middle position of the slot at the same time,and the leakage flow affects the secondary flow around the endwall significantly.The effect decreases along the direction of blade height and the largest region is up to 44.44% of the blade height.With the increase of leakage flow pressure,the slot width and the angle between the slot and major axis of engine,the energy loss coefficient of the cascade and the leakage flow rate increase monotonically.Numerical results show thatthe energy loss coefficient of the cascade increases by 14%-62% because of the leakage flow through the slot of the endwall in the parameter range of present study.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2015年第6期1448-1459,共12页 Journal of Aerospace Power
基金 中央高校基本科研业务费专项资金(56XZA13085)
关键词 涡轮导向器 端壁 缘板安装缝隙 二次流 泄漏流 能量损失系数 turbine guide vane endwall assembled endwall slot secondary flow leakage flow energy loss coefficient
  • 相关文献

参考文献31

  • 1Dunham J. A review of cascade data on secondary losses in turbines[J3. Journal of Mechanical Engineering Science, 1970,12(1) :48-59. 被引量:1
  • 2Coull J D, Hodson H P. Predicting the profile loss of high- lift low pressure turbines[J]. Journal of Turbomachinery, 2012,134(2) :021002.1-021002.14. 被引量:1
  • 3Moore J, Adhye R Y. Secondary flows and losses down- stream of a turbine cascade[J]. Journal of Engineering for Gas Turbines and Power, 1985,107(4) : 961-968. 被引量:1
  • 4Langston L S,Nice M L, Hooper R M. Three-dimensional flow within a turbine cascade passage[J:. Journal of Engi- neering for Gas Turbines and Power,1977,99(1) :21-28. 被引量:1
  • 5Paniagua G,Yasa T,La Loma A D,et al. Unsteady strong shock interactions in a transonic turbine: experimental and numerical analysis[J3. Journal of Propulsion and Power, 2008,24(4) .. 722-731. 被引量:1
  • 6Langston L S. Crossflows in a turbine cascade passage[J]. Journal of Engineering for Gas Turbines and Power, 1980, 102(4) ,866-874. 被引量:1
  • 7董志锐,刘松龄.涡轮叶栅端壁区的流动显示[J].中国科学基金,1999,13(5):296-297. 被引量:2
  • 8Denton J, Pullan G. A numerical inverstigation into the sources of endwall loss in axial flow turbinesFR:. ASME Paper GT2012-69173,2012. 被引量:1
  • 9Deich M E,Zaryankin A D,Filippov G A,et al. Method of increasing the efficiency of turbine stages with short blades EM:. Manchester, UK: Associated Electrical Industries Limited, 1960. 被引量:1
  • 10Morris A W H, Hoare R G. Secondary loss measurements in a cascade of turbine blades with meridional wall profi- ling[R:ASME Paper 75-WA/GT-13,1975. 被引量:1

二级参考文献21

  • 1王沫然,李志信.Similarity of ideal gas flow at different scales[J].Science China(Technological Sciences),2003,46(6):661-670. 被引量:7
  • 2董志锐 刘松龄 等.涡轮叶栅端壁区流动的实验研究.中国航空学会第十一届燃烧与传热传质学术讨论会论文集[M].-,1998.. 被引量:1
  • 3Sargison J E,Guo S M,Oldfield M L G,et al. A converging slot-hole film-cooling geometry: Part 1--Low-speed flat- plate heat transfer and loss[R]. ASME Paper No. 2001- GT-0126,2001. 被引量:1
  • 4Denton J D. Loss mechanisms in turbomachines[J]. Journal of Turhomachinery, 1993,115 (4) : 621 (6 pages). 被引量:1
  • 5Ito S, Goldstein R J, Eckert E R G. Film cooling of a gas turbine blade [C].//Tokyo Joint Gas Turbine Congress. Tokyo,Japan: [s. n. ],1977. 被引量:1
  • 6Schwarz S G,Goldstein R J. The two dimensional behavior of film cooling jets on concave sorfaces[C]//Gas Turbine and Aeroengine Congress and Exposition. Amsterdam, Netherlands : ASME, 1988. 被引量:1
  • 7Ko S Y, Yao Y Q,Xia B, et al. Discrete-hole film cooling characteristics over concave and convex surfaces[C]//Proceedings of the Eighth International Conference. New York, NY: Hemisphere Publishing Corp. , 1986: 1297-1301. 被引量:1
  • 8Ligrani P M,Camci C. Adiabatic film cooling effectiveness from heat transfer measurements in compressible, variableproperty flow[J]. ASME Journal of Heat Transfer, 1985, 107:313 320. 被引量:1
  • 9Arts T,Bourguignon A E. Behavior of a coolant film with two rows of holes along the pressure side of a high pressure nozzle guide vane [J]. Journal of Turbomachinery, 1990,112(3) :512(9 pages). 被引量:1
  • 10Knost D G. Predictions and measurements of film-cooling on the endwall of a first stage vane[D]. Blacksburg, Virginia, US: Virginia Polytechnic Institute and State University, 2003. 被引量:1

共引文献33

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部