期刊文献+

基于Curvelet变换的无参考图像质量评价

No-reference Image Quality Assessment Based on Curvelet Transform
下载PDF
导出
摘要 为了有效地测量不同类型的失真图像的质量,提出一种结合Curvelet(曲波)变换和神经网络的无参考图像质量评价算法(Curvelet IQA)。首先对失真图像进行曲波变换得到曲波系数,对曲波系数利用非对称广义高斯拟合,并找到曲波方向信息的能量特征值,得到一组特征评价值。同时将BP神经网络进行布谷鸟搜索算法优化,利用优化后的神经网络与曲波域相结合的方法对无参考失真图像进行预测。该算法将得到的特征值送入到神经网络中进行训练,建立特征统计值和主观评价值的非线性映射关系,随后利用映射关系得到输入图像的预测值。对LIVE数据库进行验证,实验结果表明与当前相关文献的方法相比,该算法具有更高的一致性和准确性。该算法没有针对特定的失真类型提取统计特征值,而是提取可以测量多种失真类型的统计特征值。 In order to effectively measure the quality of different types of image distortion,propose a no-reference image quality assess- ment method based on Curvelet transform and neural network,called CurveletIQA. First, get Curvelet coefficient by Curvelet transform for the distorted image, the Curvelet coefficient by asymmetric generalized Gaussian fitting, and finding the energy eigenvalue of wave direc- tion information, get a set of characteristic value. Simultaneously,have a cuckoo search algorithm to optimize the BP neural network and use the method of combination of the optimized neural network and Curvelet domain to predict the distorted image without reference. The resultant feature values into the neural network is trained to establish the nonlinear mapping relationship between statistics and subjective evaluation values. Then use the mapping relationship to obtain the predicted value of the input image. The LIVE database is verified. The experimental results show that compared with the current method of relevant literature, the algorithm can effectively evaluate a variety of distortion types, with higher consistency and accuracy.
出处 《计算机技术与发展》 2015年第7期86-90,共5页 Computer Technology and Development
基金 四川省教育科研重点项目(13ZA0169) 核废物与环境安全国防重点学科实验室项目(13zxnk12)
关键词 无参考图像质量评价 曲波变换 自然图像 非对称广义高斯分布 no-reference image quality assessment Curvelet transform natural images asymmetric generalized Gaussian distribution
  • 相关文献

参考文献13

  • 1Marziliano P, Dufaux F,Winkler S, et al. A no-reference per- ceptual blur metric [ C ]//Proceeding of international confer- ence on image processing. Genimedia:IEEE Computer Socie- ty ,2002:57-60. 被引量:1
  • 2Pan F,Lin X,Rahardja S, et al. Using edge direction informa- tion for measuring blocking artifacts of images [ J ]. Multidi- mensional Systems and Signal Processing,2007,18 (4) : 297- 308. 被引量:1
  • 3Winkler S, Susstrunk S. Visibility of noise in natural images [ J]. Proceeding of SPIE ,2004,5292 : 18-22. 被引量:1
  • 4Marziliano P, Dnfaux F, Winkler S, et al. Perceptual blur and tinging metrics : application to JPEG2000 [ J ]. Signal Process- ing : Image Communication ,2004,19 (2) : 163-172. 被引量:1
  • 5Sheikh H R,Bovik A C,Cormack L. No-reference quality as- sessment using natural scene statistics : JPEG2000 [ J ]. IEEE Trans on Image Precessing,2005,14( 11 ) : 1918-1927. 被引量:1
  • 6楼斌,沈海斌,赵武锋,严晓浪.基于自然图像统计的无参考图像质量评价[J].浙江大学学报(工学版),2010,44(2):248-252. 被引量:18
  • 7Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality [ J ]. IEEE Trans on Image Processing,2011,20(12) :3350-3364. 被引量:1
  • 8Mittal A, Moorthy A K, Bovik A C. No-reference image quali- ty assessment in the spatial domain [ J ]. IEEE Trans on Image Processing ,2012,21 (12) :4695-4708. 被引量:1
  • 9焦李成,侯彪,王爽,等.图像多尺度几何分析理论与应用一后小波分析理论与应用[M].西安:西安电子科技大学出版社,2008. 被引量:2
  • 10Starck J L, Cands E J, Donoho D L. The curvelet transform for image denoising [ J ]. IEEE Trans on Image Processing, 2002, 11 (6) :670-684. 被引量:1

二级参考文献16

  • 1NILL N B, BOUZAS B H. Objective image quality measure derived from digital image power spectra [J]. Optical Engineering, 1992, 31(4) : 813 - 825. 被引量:1
  • 2WINKLER S, SUSSTRUNK S. Visibility of noise in natural images [J]. Proceeding of SPIE Human Vision and Electronic Imaging, 2004, 5292 : 18 - 22. 被引量:1
  • 3MEER P, JOLION J M, ROSENFELD A. A fast parallel algorithm for blind estimation of noise variance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(2) : 216 - 223. 被引量:1
  • 4CORNER B R, NARAYANAN R M, REICHENBACH S E. Noise estimation in remote sensing imagery using data masking [ J]. International Journal of Remote Sensing, 2003, 24(4): 689- 702. 被引量:1
  • 5MARZILIANO P, DUFAUX F, WINKLER S, et al. A no-reference perceptual blur metric [C]// Proceeding of IEEE International Conference on Image Processing. [S. l. ]: IEEE, 2002:57 - 60. 被引量:1
  • 6ONG E, LIN W, LU Z, et al. A no-reference quality metric for measuring image blur [C]// proceeding of 7th International Symposium on Signal Processing and its Applications. [S. l. ] ; [s. n. ], 2003 : 469 - 472. 被引量:1
  • 7HU H, HAAN G D. Low cost robust blur estimator [C]// Proceeding of IEEE International Conference on Image Processing. [S. l. ]: IEEE, 2006:617-620. 被引量:1
  • 8FREDERIQUE C, THIERRY D, PATRICIA L. The blur effect: perception and estimation with a new noreference perceptual blur metric [ J]. Proceeding of SPIE. Human Vision and Electronic Imaging Ⅻ, 2007, 6492: 64920Ⅰ. 被引量:1
  • 9MARZILIANO P, DUFAUX F, WINKLER S, et al. Perceptual blur and ringing metrics: application to JPEG2000[J]. Signal Process: Image Communication, 2004, 19(2) :163 - 172. 被引量:1
  • 10TONG H, LI M, ZHANG H J, et al. No-reference quality assessment for JPEG2000 compressed images [C]// International Conference on Image Processing. Singapore: [s. n.], 2004. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部