摘要
目的:比较几种模式识别方法在中药挥发油红外光谱法鉴别中的分类效果。方法:对多种忍冬属和柑橘属中药的挥发油进行红外光谱测定,应用系统聚类、K-均值聚类、人工神经网络、支持向量机方法对样品红外光谱进行分类。结果:系统聚类与K-均值聚类分类效果不佳,人工神经网络和支持向量机方法均取得100%分类正确率。结论:可以将人工神经网络和支持向量机模式识别方法与红外光谱法结合,构建化学计量学指纹图谱技术,用于中药挥发油的鉴别。
OBJECTIVE:To compare the performance of several pattern recognition methods in the identification of volatile oils of traditional Chinese medicine(TCM)by infrared spectroscopy. METHODS:The volatile oils of several Lonicera and Citrus TCM were determined by infrared spectroscopy. All samples of infrared spectrum were classified by hierarchical clustering,K-mean clustering,artificial neural networks,and support vector machine. RESULTS:The results of hierarchical clustering and K-mean clustering were ineffective. Methods of artificial neural networks and support vector machine achieved correct classification rate of100%. CONCLUSIONS:Artificial neural networks and support vector machine can be combined with infrared spectroscopy to create chemometric fingerprinting for the identification of volatile oils of TCM.
出处
《中国药房》
CAS
北大核心
2015年第21期2986-2988,共3页
China Pharmacy
基金
广东省中医药局科研课题(No.20122071)
关键词
中药
挥发油
红外光谱法
模式识别
化学计量学指纹图谱技术
Traditional Chinese medicine
Volatile oils
Infrared spectroscopy
Pattern recognition
Chemometric fingerprinting