期刊文献+

全有界变差四阶偏微分方程图像复原模型 被引量:4

Total Bounded Variation Fourth-order PDE Image Restoration Model
下载PDF
导出
摘要 针对现有偏微分方程复原模型存在的弱点,提出了一种改进的全有界变差四阶偏微分方程图像复原模型,证明了模型的适定性。由于模型的Euler-Lagrange方程是非线性偏微分方程,利用分裂Bregman迭代算法,将其分解为三个线性子问题,结合Gauss-Seidel迭代方法得到了数值解。从实验结果和客观评价上看,上述模型和算法在对图像复原的过程中,与ROF模型和TBV_ROF模型相比较,峰值信噪比和平均结构相似度都有明显的提高。模型在复原的同时,能够很好地保持原始图像上的边缘和纹理特征,复原能力优于ROF模型和TBV_ROF模型。 For the weaknesses of traditional image restoration models of partial differential equation,a total norm regularization image restoration model of fourth-order PDE was presented and it's well-posed property was proved in this paper. Due to the Euler-Lagrange equation of the model is nonlinear PDE,the equation was decomposed to three linear problems using split Bregman iteration algorithms. This paper obtained the numerical solutions of the model combined with the Gauss-Seidel iteration method. Then from the objective evaluation and the experimental data,the PSNR and MSSIM have obviously increased compared with the ROF model and TBV_ROF modelin restoration processing. The new model is able to protect the edge and texture of the original imageat the same time to restoration,the capability of restoration of this model is better than ROF model and TBV_ROF model.
出处 《计算机仿真》 CSCD 北大核心 2015年第7期239-243,共5页 Computer Simulation
关键词 偏微分方程 全有界变差图像复原 峰值信噪比 平均结构相似度 PDE Totalbounded variation image restoration PSNR MSSIM
  • 相关文献

参考文献21

  • 1T Chan, et al. Handbook of Mathematical Models in Computer Vi-sion (Recent Developments in Total Variation Image Restoration)[M]. New York: Springer US, 2006 : 17-31. 被引量:1
  • 2H C Gonzalez, R E Woods著,阮秋琦,阮宇智,等译.数字图像处理(第二版)[M].北京:电子工业出版社,2005 :175-207. 被引量:1
  • 3王大凯编著..图像处理的偏微分方程方法[M].北京:科学出版社,2008:224.
  • 4蒋伟,胡学刚.一种基于PDE的图像复原模型[J].微计算机信息,2008,24(12):305-306. 被引量:4
  • 5P Perona, J Malik. Scale space and edge detection using anisotrop-ic diffusion[J]. IEEE PAM1,1990,17 :629-639. 被引量:1
  • 6L Kudin, S Osher, E Fatemi. Nonlinear Total Variation basedNoise Removal Algorithms[J]. Physical),1992,60:259-268. 被引量:1
  • 7Y L You, M Kaveh. Fourth-order partial differential equations fornoise removal[ J]. IEEE Transactions on Image Processing, 2000,9(10) :1723-1730. 被引量:1
  • 8钱伟长著..广义变分原理[M].北京:知识出版社,1985:363.
  • 9A N Tikhonov, U Y Arsenin. Solution of ill-posed problems[ M].New York, John Wiley & Sons, 1977:9-21. 被引量:1
  • 10J S Moll. The anisotropic total variation flow[ J] . Mathematisch-eAnnalen, 2005,332(1) : 177-218. 被引量:1

二级参考文献14

  • 1张红英,彭启琮.变分图像复原中PDE的推导及其数值实现[J].计算机工程与科学,2006,28(6):44-46. 被引量:11
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans on Pattern Anal Machine Intell, 1990, 12 (7) :629-639. 被引量:1
  • 3You Y L, Xu W,Tannenbaum A, et al. Behavioral analysis of an isotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996,5 ( 11 ) : 1539-1553. 被引量:1
  • 4Kacur J, Mikula K. Slow and fast diffusion effects in image processing[ J]. Computing and Visualization in Science, 2001 , 3 ( 4 ) : 185-195. 被引量:1
  • 5You Yu-li, Kaveh M. Four-order partial differential equations for noise removal [ J ]. IEEE Trans on Image Processing, 2000, 9 (10) : 1723-1729. 被引量:1
  • 6Gilbos G, Sochen N, Zeevi Y Y. PDE-based denoising of comples scenes using a spatially-varying fidelity term [ C ]//Proceedings of the International Conference on Image Processing, Barcelona, 2003 ,1:865-868. 被引量:1
  • 7Rudin L,Osher S,Falemi E. Nonlinear total variation based noise removat algorithms[ J]. Physica D, 1992,60:259-268. 被引量:1
  • 8Alvarez L, Lions P L, Morel J M. hnage selective smoothing and edge detection by nonlinear diffusion:Ⅱ[ J ]. SIAM Journal of Numerical Analysis, 1992,29 ( 3 ) : 845- 866. 被引量:1
  • 9Chambolle A,Lions P L. Image recovery via total variation minimization and related problems[J]. Numer Math, 1997,76(2) :167-188. 被引量:1
  • 10Chan T F, Sher S O, Shen J. The digital TV filter and nonlinear denoising [ J ]. IEEE Trans on Image Processing, 2001 , 10 ( 2 ) : 231-241. 被引量:1

共引文献9

同被引文献39

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部