摘要
Jackson定理是函数逼近的中心正定理.首先引入单位多圆柱Un上的Qp空间,其为单位圆盘U上Qp空间在多圆柱Un上的拓展.再利用高阶光滑模得到了Qp空间上的向量型Jackson逼近不等式:Ek(f,Qp)≤Cωr(1/k,f,Qp),其中Ek(f,Qp)为f∈Qp的向量阶多项式最佳逼近,ωr(1/k,f,Qp)为相应的向量阶光滑模.
Jacksonts theorem is an important result in the theory of approximation of function. The purpose of this article is to introduce Qp spaces in the unit polydiscs Un of C^n as an extension of Qp spaces in the unit disc U. Jackson's approximation theorem is established in Qp spaces. Namely,Ek(f,Qp)≤Cωr(1/k,f, Qp), where Ek (f,Qp) is the deviation of the best approximation of f∈ Qp by polynomials of degree at most kj about the j-th variable zj and ωr(1/k,f,Qp) is the corresponding modulus of smoothness.
出处
《河北师范大学学报(自然科学版)》
CAS
2015年第4期277-282,共6页
Journal of Hebei Normal University:Natural Science
基金
河北省自然科学基金(A2015207007)
河北省教育厅科研基金(QN20131027)
河北经贸大学校内科研基金(2013KYQ07)