期刊文献+

基于编码点阵结构光的苹果果梗/花萼在线识别 被引量:5

On-line Identification of Apple Stem-end/Calyx Based on Coded Spot-array Structured Light
下载PDF
导出
摘要 为解决苹果机器视觉自动分级时果梗/花萼识别的难题,提出一种基于位置变化的点阵结构光编码方法,并用于苹果果梗/花萼的在线检测。通过分析投射在物体和参考平面上光斑的成像规律,提出将光斑的位置变化作为编码基元;在二元域中,利用编码基元生成M阵列,将其作为近红外点阵结构光的编码模式;通过分析匹配后的差值矩阵,识别果梗/花萼的位置。在线实验结果表明:该方法可以有效地实现果梗/花萼的在线识别,在满足实时性要求前提下,平均识别正确率可达到93.17%。 Automatic detection of apple defects using a computer vision system is difficult due to the similarity between stem-end / calyx and true defects. Identification of stem-end / calyx is always a challenging project in automatic apple grading. This paper presents an encoding method based on position change for spot-array structured light,and the proposed method was used in distinguishing defects from stem-end / calyx of apple images in real time. By analyzing imaging process of the spots projected onto the object surface and reference plane,the position change of spot was chosen as coded primitive. Over the field of two elements,the M-array was generated by using the primitives,and was used as the coded pattern of near-infrared( NIR) spot-array structured light. Analysis of difference matrix made it possible to identify the location of stem-end / calyx regions after matching. The on-line experimental results demonstrated that the proposed method could realize the detection of stem-end / calyx efficiently,and achieve an average of 93. 17% recognition accuracy with real-time performance. The results indicated that the proposed method was effective in identification of apple stem-end / calyx.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第7期1-9,共9页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(31301236)
关键词 苹果 自动分级 果梗/花萼辨识 点阵结构光 编码模式 近红外图像 Apple Automatic sorting Stem-end / calyx identification Spot-array structured light Coded pattern Near-infrared image
  • 相关文献

参考文献17

  • 1Throop J A, Aneshansley D J, Anger W C, et al. Quality evaluation of apples based on surface defects: development of an automated inspection system[ J]. Postharvest Biology and Technology, 2005, 36(3 ) : 281 -290. 被引量:1
  • 2Zou Xiaobo, Zhao Jiewen, Li Yanxiao, et al. In-line detection of apple defects using three color cameras system[ J ]. Computers and Electronics in Agriculture, 2010, 70( 1 ) : 129 - 134. 被引量:1
  • 3Crowe T G, Delwiche M J. Real-time defect detection in fruit-Part II: An algorithm and performance of a prototype system [ J ]. Transactions of the ASAE, 1996, 39(6) : 2309 -2317. 被引量:1
  • 4Zhu Bin, Lu Jiang, Tao Yang. Three-dimensional shape enhanced transform for automatic apple stem-end/calyx identification[ J ]. Optical Engineering, 2007, 46( 1 ) : 17201.1 -9. 被引量:1
  • 5Lu Jiang, Zhu Bin, Tao Yang, et al. 3 D Surface reconstruction and analysis in automated apple stem-end/calyx identification [ J ]. Transactions of the ASABE, 2009, 52(5) : 1775 - 1784. 被引量:1
  • 6Dang Zhang, Kirt L, Dah-Jye L, et al. Automated apple stem end and calyx detection using evolution-constructed features [ J ]. Journal of Food Engineering,2013,119 (3) :411 - 418. 被引量:1
  • 7张保华,黄文倩,李江波,赵春江,刘成良,黄丹枫.基于亮度校正和AdaBoost的苹果缺陷在线识别[J].农业机械学报,2014,45(6):221-226. 被引量:13
  • 8Unay D, Gosselin B. Stem and calyx recognition on ' Jonagold' apples by pattern recognition [ J ]. Journal of Food Engineering, 2007, 78(2) : 597 -605. 被引量:1
  • 9Leemans V, Destain M F. A real-time grading method of apples based on features extracted from defects [ J ]. Journal of Food Engineering,2004, 61 ( 1 ) : 83 - 89. 被引量:1
  • 10宋怡焕,饶秀勤,应义斌.基于DT-CWT和LS-SVM的苹果果梗/花萼和缺陷识别[J].农业工程学报,2012,28(9):114-118. 被引量:17

二级参考文献42

  • 1练秋生,尚燕,陈书贞,王林.基于DT-CWT和SVM的纹理分类算法[J].光电工程,2007,34(4):109-113. 被引量:10
  • 2Devrim Unay, Bernard Gosselin, Olivier Kleynen, et al. Automatic grading of Bi-eolor apples by multispectral machine vision [ J ]. Computers and Electronics in Agriculture, 2011,75 ( 1 ) : 204 - 212. 被引量:1
  • 3Bennedsen B S, Peterson D L, Amy Tabb. Identifying defects in images of rotating apples [ J ]. Computers and Electronics in Agriculture, 2005, 48(2) :92 - 102. 被引量:1
  • 4Zou Xiaobo, Zhao Jiewen, Li Yanxiao, et al. In-line detection of apple defects using three color cameras system [J]. Computers and Electronics in Agriculture, 2010, 70( 1 ):129- 134. 被引量:1
  • 5Mehl Patrick M, Chen Yud-Ren, Kim Moon S, et al. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations [J]. Journal of Food Engineering, 2004, 61 (1) :67 -81. 被引量:1
  • 6Leemans V, Destain M-F. A real-time grading method of apples based on features extracted from defects [ J]. Journal of Food Engineering, 2004, 61 ( 3 ) :83 - 89. 被引量:1
  • 7Unay D, Gosselin B. Stem and calyx recognization on ' Jonagold' apples by pattern recognition [ J]. Journal of Food Engineering, 2007, 78(2) :597 -605. 被引量:1
  • 8Throop J A, Aneshansley D J, Anger W C, et al. Quality evaluation of apples based on surface defects: development of an automated inspection system [ J]. Postharvest Biology and Technology, 2005, 36(3) :281 -290. 被引量:1
  • 9Gomez-Sanchis J, Molto E, Camps-Vails G, et al. Automatic correction of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits [ J]. Journal of Food Engineering, 2008, 85 (2) :191 -200. 被引量:1
  • 10Diaz R, Faus G, Blasco M, et al. The application of a fast algorithm for the classification of olives by machine vision [ J]. Food Research International, 2000, 33 ( 3 - 4) :305 - 309. 被引量:1

共引文献66

同被引文献48

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部