摘要
Let R be a prime ring, L a noncentral Lie ideal and a nontrivialautomorphism of R such that us(u)ut = 0 for all u 2 L, where s; t are fixednon-negative integers. If either charR 〉 s + t or charR = 0, then R satisfies s4, thestandard identity in four variables. We also examine the identity (σ([x; y])-[x; y])n =0 for all x; y ∈ I, where I is a nonzero ideal of R and n is a fixed positive integer. Ifeither charR 〉 n or charR = 0, then R is commutative.
Let R be a prime ring, L a noncentral Lie ideal and a nontrivialautomorphism of R such that us(u)ut = 0 for all u 2 L, where s; t are fixednon-negative integers. If either charR 〉 s + t or charR = 0, then R satisfies s4, thestandard identity in four variables. We also examine the identity (σ([x; y])-[x; y])n =0 for all x; y ∈ I, where I is a nonzero ideal of R and n is a fixed positive integer. Ifeither charR 〉 n or charR = 0, then R is commutative.
基金
The NSF(1408085QA08) of Anhui Province
the Natural Science Research Foundation(KJ2014A183) of Anhui Provincial Education Department
Anhui Province College Excellent Young Talents Fund Project(2012SQRL155) of China