期刊文献+

二阶Newton法训练径向基函数神经网络的算法研究 被引量:2

Second Order Newton's Method for Training Radial Basis Function Neural Networks
下载PDF
导出
摘要 提出了一种混合加权距离测量(weighted distance measure,weighted DM)参数的构建和训练RBF(radial basis function)神经网络的两步批处理算法.该算法在引进了DM系数参数的基础上,采用Newton法分别对径向基函数的覆盖参数、均值向量参数、加权距离测度系数以及输出权值进行了优化,并在优化过程中利用OLS(orthogonal least squares)法来求解Newton法的方程组.通过实验数据,不仅分析了Newton法优化的各个参数向量对RBF网络训练的影响,而且比较了混合优化加权DM与RLS-RBF(recursive least square RBF neural network)网络训练算法的收敛性和计算成本.所得到的结论表明整合了优化参数的加权DM-RBF网络训练算法收敛速度比RLS-RBF网络训练算法更快,而且具有比LM-RBF(Levenberg-Marquardt RBF)训练算法更小的计算成本,从而说明OLS求解的Newton法对优化RBF网络参数具有重要应用价值. A hybrid two-step second-order batch approach is presented for constructing and training radial basis function(RBF)neural networks.Unlike other RBF neural network learning algorithms,the proposed paradigm uses Newton's method to train each set of network parameters,i.e.spread parameters,mean vector parameters and weighted distance measure(DM)coefficients and output weights parameters.For efficiently calculating the second-order equations of Newton's method,all the optimal parameters are found out using orthogonal least squares(OLS)with the multiply optimal learning factors(MOLFs)for training mean vector parameters.The simulation results of the proposed hybrid training algorithm on a real dataset are compared with those of the recursive least square based RBF(RLS-RBF)and Levenberg-Marquardt method based RBF(LM-RBF)training algorithms.Also,the analysis of the training performance for optimization of each set of parameters has been presented.The experimental results show that the proposed hybrid optimal weighted DM training algorithm,which is based on the optimization of the mean vectors,weighted DM coefficients and spread parameters,has significant improvement on training convergence speed compared with that of RLSRBF and has very less computation cost compared with that of LM-RBF.It confirms that Newton's method solved by OLS is a significantly valuable method for training the RBF neural network.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第7期1477-1486,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(51473088) 山东省科技攻关项目(2012GGE27069)
关键词 径向基函数神经网络 HESSIAN矩阵 NEWTON法 正交最小二乘法 网络参数优化 最优学习因子 radial basis function(RBF)neural network Hessian matrix Newton's method orthogonal least squares(OLS) weighted distance measure(weighted DM) multiply optimal learning factors(MOLFs)
  • 相关文献

参考文献32

  • 1Duda R O, Hart P E. Pattern Classification and Scene Analysis[M]. New York: Wiley, 1973. 被引量:1
  • 2Poggio T, Girosi F. A Theory of Networks for Approximation and I.earning [M]. Massachusetts: Artificial Intelligence Lahoratory and Center for Biological Information Processing and Whitaker College, Massachusetts Institute of Technology, 1989:11-45. 被引量:1
  • 3Powell M J D. Radial basis functions for multivariate interpolation: A review [M] //Algorithms for the Approximation of Functions and Data. New York: Clarendon Press, 1987:143-167. 被引量:1
  • 4Bhowmik P S, Pradhan S, Prakash M, et al. Investigation of wavelets and radial basis function neural network for incipient fault diagnosis in induction motors [C] //Proc of the 3rd IEEE CCUBES. Los Alamitos, CA: IEEE Computer Society, 2013:27-28. 被引量:1
  • 5Alexandridis A, Chondrodima E, Sarimveis H. Radial basis function network traioing using a nonaymmetric partition of the input space and particle swarm optimization [J]. IEEE Trans on Neural Networks and Learning Systems, 2013, 24 (2) : 219-230. 被引量:1
  • 6Manning T, Walsh P. Improving the performance of cgpann for breast cancer diagnosis using crossover and radial basis functions [G] //LNCS 7833: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin: Springer, 2013:165-176. 被引量:1
  • 7Mohsen H, Abbas R, Leila N. Application of radial basis function network for the modeling and simulation of turbogenerator [J]. Journal of Advances in Information Technology, 2013, 4(2): 76-79. 被引量:1
  • 8Yin Jianchuan, Zou Zaojian, Xu Feng. Sequential learning radial basis function network for real-time tidal level predictions[J]. Ocean Engineering, 2013, 57(1): 49-55. 被引量:1
  • 9Mehrsaia A, Karimib H R, Thobena K D, et al. Application of learning pallets for real-time scheduling by the use of radial basis function network [J].Neurocomputing, 2013, 101 (4) : 82-93. 被引量:1
  • 10葛彦强,汪向征,于江德.一种利用自组织映射和径向基函数神经网络的网络拥塞预测方法[J].微电子学与计算机,2012,29(12):176-179. 被引量:3

二级参考文献34

  • 1阎平凡.人工神经网络的容量、学习与计算复杂性[J].电子学报,1995,23(5):63-67. 被引量:82
  • 2PATTI A,SEZAN M,TEKALP A.Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J].IEEE Trans.on Image Processing,1997,6(8):1064-1076. 被引量:1
  • 3SCHULTZ R,STEVENSON R.Extraction of high-resolution frames from video sequences[J].IEEE Trans.on Image Processing,1996,5(6):996-1011. 被引量:1
  • 4BAKER S,KANADE T.Limits on super-resolution and how to break them[J].Computer Vision and Pattern Recognition,2002,24(9):1167-1183. 被引量:1
  • 5FREEMAN W T,JONES T R,PASZTOR E C.Example-based super-resolution[J].IEEE Computer Graphics and Applications,2002,22(2):56-65. 被引量:1
  • 6BURT P J,ADELSON E H.The laplacian pyramid as a compact image Code[J].IEEE Trans.on Communications,1983,31(4):532-540. 被引量:1
  • 7VARSHA H,PATIL.Super resolution using neural network[C].Second Asia International Conference on Modelling & Simulation,2008,492-496. 被引量:1
  • 8SUN Y.Hopfield neural network based on algorithms for image restoration and reconstruction-Part Ⅰ:Algorithms and simulations[J].IEEE Trans.on Signal Processing,2000,48(7):2105–2118. 被引量:1
  • 9SUN Y.Hopfield neural network based on algorithms for image restoration and reconstruction-Part Ⅱ:Performance and Analysis[J].IEEE Trans.on Signal Processing,2000,48(7):2119-2131. 被引量:1
  • 10YAO L,MINORU I,MARIA D C V.Super-resolution of the undersampled and subpixel shifted image sequence by a neural network[J].Imaging Systems and Technology,2004,14(1):8-15. 被引量:1

共引文献54

同被引文献24

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部