期刊文献+

基于自适应神经模糊网络的路面识别技术 被引量:13

Road Profile Input Estimation Using Adaptive-Neuro Fuzzy Inference System
下载PDF
导出
摘要 以路面识别为目的,利用自适应神经模糊网络(ANFIS)进行路面不平度激励时域估测研究.首先建立车辆1/4模型运动微分方程,并使用白噪声信号激励车辆模型,利用激励产生的模型动力学响应进行自适应神经模糊系统训练.之后对训练获得的逆向车辆动力学模型进行分析并利用随机路面激励产生的系统响应进行随机路面时域估测.最后对自适应神经模糊网络系统隶属函数个数及输入数据组合进行分析比较.仿真结果显示,自适应模糊神经网络系统能够以较高的精度完成路面时域估测. Based on adaptive neuro fuzzy inference system(ANFIS),a time domain estimation for road profile input was presented.Differential equations of quarter vehicle model were created,and white noise signal was employed to stimulate the model and the dynamic response was used to train the inverse dynamic model with ANFIS.In the simulation,different kinds of random excitations were used to verify the accuracy of ANFIS,and the effect of the number of membership function and combination of input data were also discussed.The result shows that ANFIS can be used for road estimation and its time domain reproduction.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2015年第5期481-484,489,共5页 Transactions of Beijing Institute of Technology
关键词 自适应神经模糊网络 路面识别 时域估测 路面不平度 adaptive neuro fuzzy inference system(ANFIS) road estimation time domain estimation road profile
  • 相关文献

参考文献6

  • 1赵济海等编著..路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000:205.
  • 2Imine H, Delanne Y, Sirdi N K M. Road profile input estimation in vehicle dynamics simulation[J]. Vehicle System Dynamics, 2006,44(4) :285 - 303. 被引量:1
  • 3Gonzalez A, O'brien E J, Cashell K. The use of vehicle acceleration measurements to estimate road roughness [J]. Vehicle System Dynamics, 2008,46(6) :483 - 499. 被引量:1
  • 4夏群生,余志生.汽车理论[M].北京:机械工业出版社,2006. 被引量:1
  • 5ISO 8608:1995 (E), Mechanical vibration-road surface profiles-'reporting of measured data[S]. 1995. 被引量:1
  • 6Shing Jyh, Yang Roger. ANFIS.- Adaptive-network- based fuzzy inference system[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(3): 665- 685. 被引量:1

同被引文献80

引证文献13

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部