期刊文献+

变系数Zakharov-Kuznetsov方程的三层线性隐式差分格式

A three-level difference scheme for Zakharov-Kuznetsov equation
原文传递
导出
摘要 利用有限差分法逼近变系数广义ZK(Zakharov-Kuznetsov)方程的初边值问题,建构一个三层线性化隐式差分格式.利用离散能量估计方法,讨论差分格式解的唯一性以及x方向的一阶差商在L∞模意义下的收敛性、稳定性和收敛阶数,并通过数值算例验证理论分析的结果. In this paper,by using finite difference method,an implicit difference scheme is constructed to approximate the initial-boundary value problem of ZK equation.The proposed scheme is a three-level linearization scheme.Using the method of discrete energy estimates,existence uniqueness of difference scheme is proved.With the method of the discrete energy estimate,it is shown that the difference scheme is convergent in maximum norm.The convergence order is second-order in both space and time.Some numerical experiments are conducted to illustrate the theoretical results of the proposed difference scheme.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2015年第2期31-34,39,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11271068) 江苏开放大学"十二五"规划课题(13SEW-C-076)
关键词 ZAKHAROV-KUZNETSOV方程 隐式差分格式 收敛性 稳定性 Zakharov-Kuznetsov equation implicit difference scheme convergence stability
  • 相关文献

参考文献12

  • 1ABDOU M A, ABD EIGAWAD S S. New periodic wave solutions for nonlinear evolution equations with variable coefficients via maping method [J]. Numer Meth- ods Partial Differ Eqs, 2010, 26(6) : 1608-1623. 被引量:1
  • 2GANJAVI B, MOHAMMADI H, GANJI D D, et al. Homotopy perturbation method and variational iteration method for solving Zakharov-Kuznetsov equation [J]. Am J Appl Sci, 2008, 5(7): 811-817. 被引量:1
  • 3YAN Zhilian, LIU Xiqiang. Symmetry and similarity solutions of variable coefficients generalized Zakharov- Kuznetsov equation [J]. Appl Math Comput, 2006, 180(1): 288-294. 被引量:1
  • 4WANG Chuntian. The existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain [J]. DiscreteContinDynSyst, 2014, 34(11): 4897-4910. 被引量:1
  • 5BUSTAMANTE E, ISAZA P, MEJIA J. On uniqueness properties of solutions of the Zakharov-Kuznetsov equation [J]. J Funet Anal, 2013, 264(11) : 2529-2549. 被引量:1
  • 6RIBAUD F, VENTO S. Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation [J]. SIAM J Math Anal, 2012, 44(4) : 2289-2304. 被引量:1
  • 7MA Hongcai, YU Yaodong, GE Dongjie. The auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation [J]. Comput Appl, 2009, 58(11/12): 2523-2527. 被引量:1
  • 8DARVISHI M T, KHANI F, KHEYBARI S. A numerical solution of the Kdv-Burgers' equation by spectral collocation method and Darvishi's preconditionings [J]. Int J Contemp Math Sci, 2007, 2(22): 1085-1095. 被引量:1
  • 9HAQ S, ISLAM S, UDDIN M. A mesh-free method for the numerical solution of the Kdv-Burgers equation [J]. Appl Math Model, 2009, 33(8): 3442-3449. 被引量:1
  • 10NISHIYAMA H, NOI T, OHARU S. Conservative finite difference schemes for the generalized Zakharow Kuznetsov equations [J]. J Comput Appl Math, 2012, 236(12): 2998-3006. 被引量:1

二级参考文献12

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部