期刊文献+

蜂群算法在太阳能电池参数辨识中的应用 被引量:1

Application of Artificial Bee Swarm Algorithm in Solar Cell Parameters Identification
下载PDF
导出
摘要 为了解决太阳能电池参数辨识中参数识别精度低的问题,提出了采取基于侦查蜂阶段加入遗忘因子和邻域因子的人工蜂群算法(ABS)的解决方法。ABS算法在搜索的初期通过遗忘因子和邻域因子来使侦查蜂调整路径,从而能快速收敛到最优食物源所在区域,并使全局收敛性能在搜索后期有所提高。实验及分析表明:ABS算法的优化精度明显优于粒子群优化算法、模式搜索算法、模拟退火算法和遗传算法,为太阳能参数辨识提供了一种新的方法。 In order to solve the problem of low accuracy of the parameters identification of the solar cell,a new artificial bee swarm algorithm(ABS) based on scouts adjusting phase joining forgetting factor and neighborhood factor is proposed.ABS algorithm in the early stage of the search by forgetting factor and neighborhood factor can make scouts to adjust path,which can quickly converge to the optimal food source area and can improve the global convergence performance in late search.The experiment and analysis show that the optimized precision of ABS algorithm is superior to particle swarm optimization algorithm,the pattern search algorithm,simulated annealing algorithm and genetic algorithm.So a new method is provided for parameter identification.
出处 《测控技术》 CSCD 2015年第7期132-135,139,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(41075019)
关键词 人工蜂群算法 搜索路径 遗忘因子 邻域因子 太阳能电池 参数辨识 artificial bee swarm algorithm search path forgetting factor neighborhood factor solar cell parameter identification
  • 相关文献

参考文献15

  • 1郑哲,肖勇,葛晓宇,潘佩琦.基于光电传感器的风轮转速测定[J].测控技术,2013,32(7):38-40. 被引量:7
  • 2Wei H, Cong J, Xue L Y, et al. Extracting solar cell model parameters based on chaos particle swarm algorithm [ C ]// International Conference on Electric Information and Control Engineering. 2011:398 - 402. 被引量:1
  • 3A1Rashidi M R, A1Hajri M F, E1-Naggar K M, et al. A new estimation approach for determining the I-V ch-aracteristics of solar cells [ J ]. Solar Energy,2011,85 (7) : 1543 - 1550. 被引量:1
  • 4E1-Naggar K M,A1Rashidi M R,A1Hajri M F,et al. Simula- ted annealing algorithm for photovohaic param-eters identifi- cation [ J ]. Solar Energy,2012,86 ( 1 ) :266 - 274. 被引量:1
  • 5A1Hajri M F, E1-Naggar K M, A1Rashidi M R, et al. Optimal extraction of solar cell parameters using pattern search [ J ]. Renewable Energy ,2012,44:238 - 245. 被引量:1
  • 6Dai C H, Chen W K,Zhu Y F. Seeker optimization algorithm for digital IIR filter design[ J], IEEE Transactions Industrial Electronics ,2010,57 (5) : 1710 - 1718. 被引量:1
  • 7Askarzadeh A, Rezazadeh A. Artificial bee swarm optimiza- tion algorithm for parameters identification of solar cell mod- els[ J]. Applied Energy ,2013,102:943 - 949. 被引量:1
  • 8Orioli A, Gangi A D. A procedure to calculate the five-par- ameter model of crystalline silicon photovohaic modules on the basis of the tabular performance data[ J]. Applied Energy 2013,102 : 1160 - 1177. 被引量:1
  • 9Easwarakhanthan T, Bottin J, Bouhouch I, et al. Nonl-inear minimization algorithm for determining the solar ce-ll param- eters with microcomputers [ J ]. Solar Energy, 1986,4 ( 1 ). 被引量:1
  • 10Chan D S H, Phillips J R, Phang J C H. A comparative study of extraction methods for solar cell model parameters [ J ]. Solid-State Eleetronies, 1986,29 (3) : 32 - 37. 被引量:1

二级参考文献12

共引文献86

同被引文献31

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部