期刊文献+

一种基于数据相关性的半监督模糊聚类集成方法 被引量:1

Semi-supervised Fuzzy Clustering Ensemble Approach with Data Correlation
下载PDF
导出
摘要 现有的半监督聚类集成方法能利用先验信息,使集成的准确性、鲁棒性和稳定性得到提高,但在集成阶段加入成对约束信息时,只考虑了给定的约束信息而忽视了约束点与被约束点的邻域点之间的关系。针对此问题,提出了一种基于数据相关性的半监督模糊聚类集成方法。该方法首先利用半监督模糊聚类算法建立集成信息矩阵,并将其转换为相似性矩阵;然后,利用已知的约束信息及约束点与被约束点的邻域点之间的关系来修改相似性矩阵;最后,利用图划分算法得到最终的聚类结果。真实数据上的实验结果表明,提出的方法可以有效提高聚类质量。 Semi-supervised clustering ensemble has emerged as a powerful machine learning paradigm that provides im- proved precision, robustness and stability by taking advantage of prior information,while most of them only consider the given pairwise constraints and do not consider the neighbors around the data points constrained in the ensemble step. In this paper,a semi-supervised fuzzy clustering ensemble with data eorrelation(SFCEDC)was proposed to overcome this defect. Firstly, an ensemble information matrix is built by primarily exploiting the results of semi-supervised fuzzy clus- tering and a similarity matrix is constructed by aggregating much information of the ensemble information matrix. And then this matrix is modified by using the given constraints and the neighbors around the data points constrained. Final- ly, a graph partitioning algorithm is employed to get the final clustering results. Experimental results on UCI datasets demonstrate that the proposed approach can improve clustering performance effectively.
出处 《计算机科学》 CSCD 北大核心 2015年第6期41-45,共5页 Computer Science
基金 国家自然科学基金(61170111 61134002) 西南交通大学牵引动力国家重点实验室自主研究课题(2012TPL_T15)资助
关键词 半监督聚类集成 模糊聚类 成对约束 邻域点 Semi-supervised clustering ensemble Fuzzy clustering Pairwise constraints Neighbors points
  • 相关文献

参考文献19

  • 1Han J, Kamber M, Pei J. Data Mining Concepts and Techniques [M]. Morgan Kaufmann Press, 2012. 被引量:1
  • 2Wolpert D H, Macready W G. No free lunch theorems for search [R]. Technical Report SFI-TR-9502010. Santa Fe Institute, 1995. 被引量:1
  • 3Topchy A,Jain A K,Puneh W. Clustering ensembles., models of consensus and weak partition [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2005,27 (12) : 1866-1881. 被引量:1
  • 4Strehl A,Ghosh J. Cluster ensembles., a knowledge reuse frame- work for combining multiple partitions [J]. Journal of Machine Learning Research, 2003,3 (3) : 583-617. 被引量:1
  • 5罗会兰,危辉.基于数学形态学的聚类集成算法[J].计算机科学,2010,37(8):214-218. 被引量:5
  • 6Zhou Zhi-hua. Ensemble Methods: Foundations and Algorithms[M]. CRC Press, 2012. 被引量:1
  • 7Iam-on N, Boongone T, Garrett S, et al. Link-based cluster en- semble approach for categorical data clustering [J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24: 413-425. 被引量:1
  • 8Naldi M C,Carvalho A C P L F,Campello R J G B. Cluster en- semble selection based on relative validity indexes [J]. Data Mining and Knowledge Discovery, 2013,27 (2) : 259-289. 被引量:1
  • 9Abdala D D,Jiang X. An evidence accumulation approach to con- strained clustering combination[C]//Proceedings of the 6th In- ternational Conference on Machine Learning and Data Mining in Pattern Recognition. Leipzig,Germany,2009 : 361-371. 被引量:1
  • 10王红军,李志蜀,戚建淮,成飏,周鹏,周维.基于贝叶斯网络的半监督聚类集成模型[J].软件学报,2010,21(11):2814-2825. 被引量:9

二级参考文献19

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2罗会兰,孔繁胜,杨小兵,刘必红.基于数学形态学的聚类分析[J].模式识别与人工智能,2006,19(6):727-733. 被引量:6
  • 3THEODORIDISS KOUTROUMBASK.模式识别(第二版)[M].北京:电子工业出版社,2004.. 被引量:4
  • 4Breen E J,Jones R,Talbot H.Mathematical morphology:A useful set of tools for image analysis[J].Statistics and Computing,2000,10(2):105-120. 被引量:1
  • 5Matheron F.Random Sets and Integral Geometry[M].New York:John Wiley & Sons Inc,1975. 被引量:1
  • 6Serra J.Image Analysis and Mathematical Morphology[M].London:Academic Press,1984. 被引量:1
  • 7Gonzalez R C,Woods R E.Digital Image Processing (2nd Edition)[M].Prentice Hall,2002. 被引量:1
  • 8Mcreynolds D P,Lowe D G.Geodesic saliency of watershed contours and hierarchical segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,8(12):1174-1185. 被引量:1
  • 9Breen E J,Jones R,Talbot H.Mathematical morphology:A useful set of tools for image analysis[J].Statistics and Computing ,2000,10(2):105-120. 被引量:1
  • 10Postaire J G,Zhang R D,Lecocq-Botte C.Clustering analysis by binary morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(2):170-180. 被引量:1

共引文献12

同被引文献4

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部