期刊文献+

密度场下的短程社会力模型 被引量:5

Social Force Model for Crowd Simulation Using Density Field
下载PDF
导出
摘要 密度场是行人感知周围人群密度信息的有效工具。它提供一种直观且高效的手段,在人群模拟中快速调整行人移动方向。在人群建模的研究领域中,社会力模型是相当经典的方法,能够模拟一些常见的自组织现象。但是,其依然存在一些不足,比如人群数目的增长使得模型的时间复杂度呈指数增长,同时还存在行人重叠问题以及行人振荡问题等。利用密度场对社会力模型进行了改进,首先提出行人的受力邻域与墙壁的排斥距离来降低算法复杂性,其次为社会力模型建立了相匹配的网格密度场以使行人能够绕开高密度区域,最后提出了密度导向阈值这一概念,使得人群密度值大于密度导向阈值时,行人会综合目标方向与周围的低密度方向作为新方向。实验结果表明,改进后的模型不仅能模拟出基本的人群自组织现象,而且在时间复杂度方面有明显优势。 As an effective tool,density field provides an intuitive and efficient means to quickly adjust the direction of pedestrians' movement in crowd simulation when pedestrians need to percept the density information around. Social force model(SFM) is a popular and classical method in the research of crowd simulation and its significance lies in the simulation of some common-seen self-organized phenomenorL However, social force model still has many deficiencies. For instance, the time complexity of social force model grows exponentially when the number of pedestrians increases, and others are pedestrians~ overlapping and oscillating. This paper modified social force model using density field. First, pedestrians' stress region and walls' repulsive distance were introduced to reduce time complexity of the algorithm. Se- condly, this paper built a grid density field matching social force model(SFM), so that pedestrian can bypass the high density region. At last, we proposed a concept named density guiding threshold(DGT). When the grid density is bigger than DGT, pedestrian chooses a new direction which combines the goal direction and the direction of low density regiorL The numerous experimental results show that short-range SFM using density field not only simulates basic self-organi- zed phenomenon of crowd, but also has advantages in time complexity.
出处 《计算机科学》 CSCD 北大核心 2015年第6期12-17,53,共7页 Computer Science
基金 国家自然科学基金(U0735001 60473109) 广东省自然科学博士启动基金(04300602)资助
关键词 人群模拟 社会力模型 人群密度 密度场 密度导向阈值 Crowd simulation Social force model Crowd density Density field Density guiding thresholdi
  • 相关文献

参考文献18

  • 1Hughes R I,. The flow of human crowd [J]. Annual review of fluid mechanics. 2003,35 ( 1 ) : 169-182. 被引量:1
  • 2Khatib O. Real-time obstacle avoidance for manipulators and mobile robots [J]. The international journal of robotics re- search, 1986,5 ( 1 ) : 90-98. 被引量:1
  • 3Von Neumann J, Burks A W, Theory of self-reproducing auto- mata [M]. USA: University of Illinois Press, 1966. 被引量:1
  • 4Van den Berg J, Lin M, Manocha D. Reciprocal velocity ohsta cles for real-time multi-agent navigation[C]//1EEE Interna- tional Conference on Robotics and Automation. 2008 ( ICRA 2008). IEEE,2008 : 1928-1935. 被引量:1
  • 5Vaina L, Beardsley S A, Rushton S K. Optic flow and beyond [M]. Springer, 2004 : 307-837. 被引量:1
  • 6Helbing D, Molnar P. Social force model for pedestrian dynamics [J]. Physical review E, 1995.51 (5) : 4282. 被引量:1
  • 7Helbing D,Farkas I, Vicsek T. Simulating dynamical features of escape panic [J]. Nature, 2000,407 (6803) : 487-490. 被引量:1
  • 8Helbing D,Farkas I J, Molnar P, et al. Simulation of pedestrian crowds in normal and evacuation situations [J]. Pedestrian and evacuation dynamics, 2002,21 : 21- 58. 被引量:1
  • 9Helbing D,Buzna I.,Johansson A,et al. Self-organized pedes- trian crowd dynamics: Experiments, simulations, and design solutions[J]. Transportation science, 2005,39 ( 1 ) : 1-24. 被引量:1
  • 10Lakoba T I, Kaup D J, Finkelstein N M. Modifications of the Helbing-Molnar-Farkas-Vicsek social force model for pedestrian evolution [J]. Simulation, 2005,81 (5) : 339-352. 被引量:1

二级参考文献55

  • 1于道中.中国职工体质调研报告[J].福建体育科技,1997,16(4):6-13. 被引量:30
  • 2YANG Lizhong, FANG Weifeng, LI Jian, HUANG Rui & FAN Weicheng State Key Laboratory of Fire Science, University of Science and Tech-nology of China, Hefei 230026, China Correspondence should be addressed to Yang Lizhong (e-mail:zxd@ustc. edu.cn).Cellular automata pedestrian movement model considering human behavior[J].Chinese Science Bulletin,2003,48(16):1695-1699. 被引量:16
  • 3Johansson A, Helbing D, Shukla P K. Specification of the social force pedestrian model by evolutionary adiusment to video tracking data [J]. Advances in Complex Systems, 2007, 10(Suppl): 271-288. 被引量:1
  • 4Ulicny B, Thalmann D. Crowd simulation for virtual heritage [OL]. [ 2010 07-12 ]. http://infoscience, epfl. ch/record/ 100876. 被引量:1
  • 5Reynolds C. Big fast crowds on ps3 [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2006:113-121. 被引量:1
  • 6Milazzo Ⅱ J S, Rouphail N M, Hummer J E, et al. The effect of pedestrians on the capacity of signalized intersections[J]. Transportation Research Record, 1998(1646): 37-46. 被引量:1
  • 7Hoogendoorn S P, Bovy P H L. Pedestrian travel behavior modeling[J]. Networks and Spatial Economies, 2005, 5(2) 193-216. 被引量:1
  • 8Lovas G G. Modeling and simulation of pedestrian traffic flow [J]. Transporlation Research Part B: Methodological, 1994, 28(6) : 429-44,3. 被引量:1
  • 9Thompaon I' A, Marchant E W, A computer model the evacuation of large building populations[J].Fire Safety Journal, 1995, 24(2): 131-148. 被引量:1
  • 10Watts J M. Computer models for evacuation analysis [J]. Fire Safety Journal, 1987, 12(3): 237-245. 被引量:1

共引文献42

同被引文献14

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部