期刊文献+

云计算虚拟化平台的内存资源全局优化研究 被引量:9

Research on Memory Resources Global Optimization of Cloud Computing Virtualization Platform
下载PDF
导出
摘要 借助虚拟化技术,云计算技术能将大规模计算资源统一管理,提高利用效率,但其物理服务器的内存资源边界限制了资源的全局优化能力。为此,对全局优化框架进行改进,增加虚拟机内部资源空闲时的最小内存边界值,基于改进框架,将虚拟机的内存资源分为利用率低和利用率高2种情况,并分别给出2种调节算法及其相互关系。实验结果表明,该方法能降低每次与全局空闲内存池交换的次数,又可降低虚拟机之间的内存交换次数,平均内存资源利用效率得到较大提高。 With the help of virtualization technology, cloud computing will be unified computing resource management to improve the use efficiency,but the combination of virtualization and cloud computing platform brings a new mode of use, especially the physical server resource boundary limits the resources optimization ability. This paper improves the global optimization framework, increases is idle the minimum memory boundary value when internal resources of virtual machine. Based on the framework, the memory resources are divided into virtual machine for the low utilization rate and high utilization rate of the situation, and gives two kinds of control algorithm, as well as the relationship between these two kinds of algorithms. The method not only reduces the number of the exchanging between virtual machines and platform, but also reduces the switching frequency, so average memory resource utilization efficiency can be greatly improved.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第7期55-59,共5页 Computer Engineering
基金 2015年安徽省软科学研究计划基金资助项目"基于云计算中系统服务高可靠性的关键技术研究"(1502052053) 安徽省教育厅自然科学研究计划基金资助一般项目(KJ2013Z320) 宿州学院科研平台基金资助项目(2013YKF18)
关键词 云计算 虚拟化 全局优化 最小内存边界值 内部调节 全局调节 cloud computing virtualization global optimization minimum memory boundary value internal adjustment global adjustment
  • 相关文献

参考文献15

  • 1Gong Y,Ying Z,Lin M.A Survey of Cloud Computing[C]//Proceedings of the 2nd International Conference on Green Communications and Networks.Berlin.Germany:Springer,2013:79-84. 被引量:1
  • 2Xu X.From Cloud Computing to Cloud Manufacturing[J].Robotics and Computer-Integrated Manufacturing,2012,28(1):75-86. 被引量:1
  • 3Michael A,Armando F,Rean G.Above the Clouds:A Berkeley View of Cloud Computing[EB/OL].(2009-06-12).http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf. 被引量:1
  • 4《虚拟化与云计算》小组编著..虚拟化与云计算[M].北京:电子工业出版社,2009:251.
  • 5Vogels W.Beyond Server Consolidation[J].Journal of the ACM,2008,6(1):20. 被引量:1
  • 6Adams K,Agesen O.A Comparison of Software and Hardw are Techniques for x86 Virtualization[J].ACM SIGOPS Operating Systems Review,2006,40(5):2-13. 被引量:1
  • 7Mc Laughlin L.Virtualization in the Enterprise Survey:Your Virtualized State in 2008[Z].CXO Media Inc.,2008. 被引量:1
  • 8Dean J.Challenges in Building Large-scale Information Retrieval Systems:Invited Talk[C]//Proceedings of the2nd ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2009:1-10. 被引量:1
  • 9李亚琼,宋莹,黄永兵.一种面向虚拟化云计算平台的内存优化技术[J].计算机学报,2011,34(4):684-693. 被引量:60
  • 10张伟哲,张宏莉,张迪,程涛.云计算平台中多虚拟机内存协同优化策略研究[J].计算机学报,2011,34(12):2265-2277. 被引量:27

二级参考文献54

  • 1Rangan K, Cooke A, Post J, Schindler N. The Cloud Wars:100+billion at stake. Analyst The, No. May, 2008; 1-90. 被引量:1
  • 2Siegele L. Let It Rise: A Special Report on Corporate IT. The Economist, No. October, 2008:1-14. 被引量:1
  • 3Armbrust M, Pox A, Griffith R ez al. Above the clouds, ABerkeley view of cloud computing. University of California at Berkeley:Technical Report No. UCB/EECS-2009-28, 2009. 被引量:1
  • 4VMware virtualization Software for I)esktops, Servers&Virtual Machines for Public and Private Cloud Solutions. http,, //www. vmware, corn/. 被引量:1
  • 5Xen, the powerful open source industry standard for virtual-izatlon, http: //www. xen. org/. 被引量:1
  • 6Li K. IVY: A shared virtual memory system for parallelcomputing//Proceedings of the International Conference on Parallel Processing. The Pennsylvania State University,University Park, PA, USA, Pennsylvania State University Press, 1988:94-101. 被引量:1
  • 7Hu W, Shi W, Tang Z. JIAJIA: An SVM system based on anew cache coherence protocol//Proceedings of the High Per- formance Computing and Networking ( HPCN '99). Amster-dam, The Netherlands, 1999:463-472. 被引量:1
  • 8Koussih S, Acharya A, Setia S. Dodo: A user-level systemfor exploiting idle memory in workstation clusters//Proeeed-ings of the 8th IEEE International Symposium on High Per- formance Distributed Computing. Redondo Beach, California, 1999: 46. 被引量:1
  • 9Newhall Tie, Finney Sean, Ganehev Kuzman, Spiegel Mi- chael. Nswap: A betwork swapping module for Linux elus-ters//Proceedings of the Euro-Par' 03 International Con~er-ence on Prarallel and Distributed Computing. Klagenfurt, Austria, 2003: 1160. 被引量:1
  • 10Hines Michael, Wang Jian, Gopalan Kartik. Distributedanemone: Transparent low latency access to remote memory in commodity clusters//Proceedings of the International Con-ference on High-Performance Computing. Bangalore, India. Lecture Notes in Computer Science 4297. Springer, 2006: 509-521. 被引量:1

共引文献114

同被引文献67

  • 1张焕青,张学平,王海涛,刘彦涵.基于负载均衡蚁群优化算法的云计算任务调度[J].微电子学与计算机,2015,32(5):31-35. 被引量:35
  • 2Weng Chuliang,Guo Minyi,Yuan Luo,et al.Hybrid CPU Management for Adapting to the Diversity of Virtual Machines[J].IEEE Transactions on Computers,2013,62(7):1332-1344. 被引量:1
  • 3Yoo Seehwan.Real-time Scheduling for Xen-ARM Virtual Machines[J].IEEE Transactions on Mobile Computing,2014,13(8):1857-1867. 被引量:1
  • 4Kaewpuang R,Chaisiri S,Niyato D.Cooperative Virtual Machine Management in Smart Grid Environment[J].IEEE Transactions on Services Computing,2014,7(4):546-560. 被引量:1
  • 5Raad P,Secci S,Dung Chi-phung,et al.Achieving Subsecond Downtimes in Large-scale Virtual Machine Migrations with LISP[J].IEEE Transactions on Network and Service Management,2014,11(2):133-143. 被引量:1
  • 6Tang Maolin,Pan Shenchen.A Hybrid Genetic Algorithm for the Energy-efficient Virtual Machine Placement Problem in Data Centers[J].Neural Processing Letters,2015,41(2):211-221. 被引量:1
  • 7Liu Xinhua,Peng Gaoliang,Liu Xiumei,et al.Disassembly Sequence Planning Approach for Product Virtual Maintenance Based on Iimproved Max-min Ant System[J].International Journal of Advanced Manufacturing Technology,2012,59(5):829-839. 被引量:1
  • 8Jin Hai,Gao Wei,Wu Song,et al.VRAS:A Lightweight Local Resource Allocation System for Virtual Machine Monitor[J].Wireless Personal Communications,2013,73(4):1513-1528. 被引量:1
  • 9Lovasz G,Niedermeier F,de Meer H.Performance Tradeoffs of Energy-aware Virtual Machine Consolida-tion[J].Cluster Computing,2013,16(3):481-496. 被引量:1
  • 10Tseng Fan-hsun,Chen Chi-yuan,Chou Li-der,et al.Service-oriented Virtual Machine Placement Optimi-zation for Green Data Center[J].Mobile Networks and Applications,2015,20(5):556-566. 被引量:1

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部