摘要
A total of 26 isolates were obtained from solar salt ponds of different salinities(100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16 SrRNA gene sequences indicated that five bacteria genera H alomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera H alorubrum were present. The genus H alomonas was predominant with eight strains distributed in a salinity range of 100–200, followed by H alorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate S alimicrobium species based on the phylogenic analysis of the 16 SrRNA gene sequence and its biochemical characteristics when compared with known related species.
A total of 26 isolates were obtained from solar salt ponds of different salinities (100, 150, 200, and 250) in Hangu Saltworks Co. Ltd., Tianjin, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that five bacteria genera Halomonas, Salinicoccus, Oceanobacillus, Gracibacillus, and Salimicrobium and one archaea genera Halorubrum were present. The genus Halomonas was predominant with eight strains distributed in a salinity range of 100-200, followed by Halorubrum with six strains in salinity 250. Based on the genus and original sampling salinity, eight bacterial and two archaeal isolates were selected for further morphological, physiological, and biochemical characterization. All of the bacterial strains were moderately halophilic with the optimal salinity for growth being either 50 or 100, while two archaeal strains were extremely halophilic with an optimal growth salinity of 200. Additionally, we put forth strain SM.200-5 as a new candidate Salimicrobium species based on the phylogenic analysis of the 16S rRNA gene sequence and its biochemical characteristics when compared with known related species.
基金
Supported by the International Cooperation Research Program of the Ministry of Science & Technology of China(No.2010DFA32300)
the Natural Science Foundation of Tianjin(No.13JCZDJC28700)
the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry(No.201105)