摘要
针对现有基于郎之万夹心振子的低频超声雾化喷头驱动电压高、工作效率低、电路和喷头发热严重、体积较大难以生成超细雾滴等缺点,研发了一种低频弯振超声雾化喷头,该喷头的核心工作部件是轴对称复合弯振压电振子。为了研究轴对称复合弯振压电振子关键结构参数对其基频的影响,在ANSYS平台上,建立了轴对称复合弯振压电振子的虚拟试验系统。采用正交试验设计方法,对试验结果进行了极差分析和回归分析,建立了试验指标轴对称复合弯振压电振子基频与压电陶瓷的外径、内径、厚度及金属圆片直径的回归数学模型。极差分析和回归分析结果表明:压电陶瓷的外径、内径及金属圆片直径对轴对称复合弯振压电振子基频的影响极显著;压电陶瓷厚度对轴对称复合弯振压电振子基频的影响显著;各影响因素对低频弯振超声雾化喷头基频的影响主次顺序依次为压电陶瓷外径、压电陶瓷内径、金属圆片直径、压电陶瓷厚度。轴对称复合弯振压电振子物理样机的基频测试试验结果和回归数学模型预测结果对比表明该回归模型的预测误差基本在5%以内,从而验证了回归模型预测的精准性。该回归模型为轴对称复合弯振压电振子结构参数的优化设计提供了较为实用的数学模型。
Ultrasonic atomization had been paid so much attention as a new spraying technique recently. With such advantages as small droplets, uniform size distribution, high roundness, large atomization quantity and low liquid delivery pressure, ultrasonic atomization is widely used in aeroponic, agricultural humidifying fields, reagents atomization treatment, semiconductor etching and so on. According to different the working frequency, the current ultrasonic atomizer mainly includes high-frequency(working frequency is greater than 1 MHz) and low-frequency(working frequency is in the range between 20 k Hz and 100 kH z). Application of high-frequency ultrasonic atomizer was highly limited for such disadvantages as low reliability, high driving voltage, short continuous working time, high energy consuming, failing in atomizing high viscosity liquids, small and unstable atomization amount. Above all, chemical structures of liquids atomized by high frequency ultrasonic atomizer would be changed, so this kind of atomizer was just suitable for atomizing water. Current actuators of low-frequency ultrasonic nozzles were mainly made of Langevin piezoelectric actuators, which included piezoelectric discs, front covers and rear covers. Such disadvantages as high driving working voltage, low efficiency, severe heat, large volume and uneven distribution of droplets limited this kind of low-frequency ultrasonic nozzles to be spread. In order to develop a low frequency ultrasonic nozzle with such advantages as low driving working voltage, high working efficiency, small feat, fine and uneven distribution of droplets, a novel low frequency ultrasonic nozzle, whose actuator was an axial symmetry bending composite piezoelectric actuator, was proposed and designed in this paper. While the core component of this ultrasonic nozzle, namely, an axial symmetry bending composite piezoelectric actuator was composed of a piezoelectric ceramic ring and a metal disc. At the present, the fundamental vibration frequency of this kind of actuator
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2015年第4期55-62,共8页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家自然科学基金资助项目(51275214)
江苏省自然科学基金资助项目(BK2011470)
江苏高校优势学科建设工程资助项目(苏财教(2011)8号)
关键词
喷头
喷雾
压电振子
基频
超声雾化
正交设计法
有限元法
nozzle
spraying
piezoelectric actuator
composite fundamental frequency
ultrasonic nozzle
orthogonal design
finite element method